Skip to main content

Podospora anserina: From Laboratory to Biotechnology

  • Chapter
  • First Online:
Genomics of Soil- and Plant-Associated Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 36))

Abstract

Although not as popular as its relative Neurospora crassa or its more distant cousin Aspergillus nidulans, Podospora anserina has much to offer as a laboratory model. Indeed, this non-pathogenic species, easy to grow and reproduce sexually, has been used for nearly 100 years to study various phenomena of general importance in biology such as sexual reproduction, cell differentiation and death, prions and prion-like infectious factors, protein translation, mitochondrial physiology or ageing. With the availability of the complete genome sequence, new technologies are being developed, which, combined with the fast and efficient genetic analysis possible with P. anserina, make studies with this organism even more effective. Moreover, the genome sequence has enabled access to hitherto unknown genes involved in the adaptation of P. anserina to its biotope and with potential application in biomass degradation for the biofuel industries, in bioremediation of polluted soils and in production of secondary metabolites with interesting activities. Without doubt additional important discoveries are to be made by studying this organism and will permit an even broader usage of P. anserina in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam C, Picard M, Déquard-Chablat M, Sellem CH, Denmat SH-L, Contamine V (2012) Biological roles of the Podospora anserina mitochondrial lon protease and the importance of its N-domain. PLoS One 7:e38138

    Article  PubMed  CAS  Google Scholar 

  • Beckett A, Wilson IM (1968) Ascus cytology of Podospora anserina. J Gen Microbiol 53:81

    Article  PubMed  CAS  Google Scholar 

  • Begueret J, Razanamparany V, Perrot M, Barreau C (1984) Cloning gene ura5 for the orotidylic acid pyrophosphorylase of the filamentous fungus Podospora anserina: transformation of protoplasts. Gene 32:487

    Article  PubMed  CAS  Google Scholar 

  • Beisson-Schecroun J (1962) Incompatibilité cellulaire et interactions nucléocytoplasmiques dans les phénomènes de “barrage” chez le Podospora anserina. Ann Genet 4:4

    PubMed  CAS  Google Scholar 

  • Belcour L (1976) Loss of a cytoplasmic determinant through formation of protoplasts in Podospora. Neurospora Newsl 23:26

    Google Scholar 

  • Belcour L, Begel O, Duchiron F, Lecomte P (1978) Four mitochondrial loci in Podospora anserina. Neurospora Newsl 25:26

    Google Scholar 

  • Belcour L, Begel O, Picard M (1991) A site-specific deletion in mitochondrial DNA of Podospora is under the control of nuclear genes. Proc Natl Acad Sci U S A 88:3579

    Article  PubMed  CAS  Google Scholar 

  • Berteaux-Lecellier V, Picard M, Thompson-Coffe C, Zickler D, Panvier-Adoutte A, Simonet JM (1995) A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81:1043

    Article  PubMed  CAS  Google Scholar 

  • Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC (2013) Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol 79:488

    Article  PubMed  CAS  Google Scholar 

  • Bidard F, Imbeaud S, Reymond N, Lespinet O, Silar P, Clave C, Delacroix H, Berteaux-Lecellier V, Debuchy R (2010) A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina. BMC Res Notes 3:171

    Article  PubMed  CAS  Google Scholar 

  • Bidard F, Ait Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R (2011) Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 6:e21476

    Article  PubMed  CAS  Google Scholar 

  • Bidard F, Coppin E, Silar P (2012) The transcriptional response to the inactivation of the PaMpk1 and PaMpk2 MAP kinase pathways in Podospora anserina. Fungal Genet Biol 49:643

    Article  PubMed  CAS  Google Scholar 

  • Bouhouche K, Zickler D, Debuchy R, Arnaise S (2004) Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167:151

    Article  PubMed  CAS  Google Scholar 

  • Bourdais A, Bidard F, Zickler D, Berteaux-Lecellier V, Silar P, Espagne E (2012) Wood utilization is dependent on catalase activities in the filamentous fungus Podospora anserina. PLoS One 7:e29820

    Article  PubMed  CAS  Google Scholar 

  • Brun S, Malagnac F, Bidard F, Lalucque H, Silar P (2009) Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 74:480

    Article  PubMed  CAS  Google Scholar 

  • Brygoo Y, Debuchy R (1985) Transformation by integration in Podospora anserina. I. Methodology and phenomenology. Mol Gen Genet 200:128

    Article  CAS  Google Scholar 

  • Buller AHR (1933) The formation of hyphal fusions in the mycelium of the higher fungi. In: Researches on fungi. Longmans Green, London, pp 1–74

    Google Scholar 

  • Chevanne D, Bastiaans E, Debets A, Saupe SJ, Clave C, Paoletti M (2009) Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family. Curr Genet 55:93

    Article  PubMed  CAS  Google Scholar 

  • Chevanne D, Saupe SJ, Clave C, Paoletti M (2010) WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family. BMC Evol Biol 10:134

    Article  PubMed  CAS  Google Scholar 

  • Chevaugeon J, van Nguyen H (1969) Internal determinism of hyphal growth rhythms. Trans Br Mycol Soc 53:1

    Article  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352

    Article  PubMed  CAS  Google Scholar 

  • Coppin E, Silar P (2007) Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina. Mycol Res 111:901

    Article  PubMed  CAS  Google Scholar 

  • Coppin E, de Renty C, Debuchy R (2005) The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryot Cell 4:407

    Article  PubMed  CAS  Google Scholar 

  • Coppin E, Berteaux-Lecellier V, Bidard F, Brun S, Ruprich-Robert G, Espagne E, Ait-Benkhali J, Goarin A, Nesseir A, Planamente S, Debuchy R, Silar P (2012) Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body. PLoS One 7:e37488

    Article  PubMed  CAS  Google Scholar 

  • Coppin-Raynal E, Dequard-Chablat M, Picard M (1988) Genetics of ribosomes and translational accuracy in Podospora anserina. In: Tuite M, Picard M, Bolotin-Fukuhara M (eds) Genetics of translation: new approaches. Springer, Berlin, pp 431–442

    Chapter  Google Scholar 

  • Coppin-Raynal E, Picard M, Arnaise S (1989) Transformation by integration in Podospora anserina. III. Replacement of a chromosome segment by a two-step process. Mol Gen Genet 219:270

    Article  PubMed  CAS  Google Scholar 

  • Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL (2012) Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci U S A 109:7397

    Article  PubMed  CAS  Google Scholar 

  • Coustou V, Deleu C, Saupe S, Bégueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A 94:9773

    Article  PubMed  CAS  Google Scholar 

  • Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237

    Article  PubMed  CAS  Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1978) Etude au microscope électronique du DNA mitochondrial de Podospora anserina et présence d’une série multimérique de molécules circulaires de DNA dans des cultures sénescentes. C R Acad Sci Paris 287:157

    CAS  Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171:239

    Article  PubMed  CAS  Google Scholar 

  • Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375

    Article  PubMed  CAS  Google Scholar 

  • Curran KA, Leavitt JM, Karim AS, Alper HS (2013) Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55

    Article  PubMed  CAS  Google Scholar 

  • Dalstra HJP, Swart K, Debets AJM, Saupe SJ, Hoekstra RF (2003) Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc Natl Acad Sci U S A 100:6616

    Article  PubMed  CAS  Google Scholar 

  • Debets AJ, Dalstra HJ, Slakhorst M, Koopmanschap B, Hoekstra RF, Saupe SJ (2012) High natural prevalence of a fungal prion. Proc Natl Acad Sci U S A 109:10432

    Article  PubMed  CAS  Google Scholar 

  • Dequard-Chablat M, Silar P (2006) Podospora anserina AS6 gene encodes the cytosolic ribosomal protein of the E. coli S12 family. Fungal Genet Newsl 53:26

    Google Scholar 

  • Déquard-Chablat M, Nguyen TT, Contamine V, Hermann-Le Denmat S, Malagnac F (2012) Efficient tools to target DNA to Podospora anserina. Fungal Genet Rep 59:21

    Google Scholar 

  • Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A (2000) A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci U S A 97:4138

    Article  PubMed  CAS  Google Scholar 

  • El-Khoury R, Sainsard-Chanet A (2010) Deletion of the mitochondrial NADH kinase increases mitochondrial DNA stability and life span in the filamentous fungus Podospora anserina. Exp Gerontol 45:543

    Article  PubMed  CAS  Google Scholar 

  • El-Khoury R, Sellem CH, Coppin E, Boivin A, Maas MF, Debuchy R, Sainsard-Chanet A (2008) Gene deletion and allelic replacement in the filamentous fungus Podospora anserina. Curr Genet 53:249

    Article  PubMed  CAS  Google Scholar 

  • Engh I, Nowrousian M, Kuck U (2010) Sordaria macrospora, a model organism to study fungal cellular development. Eur J Cell Biol 89:864

    Article  PubMed  CAS  Google Scholar 

  • Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Segurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Dequard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarre B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9:R77

    Article  PubMed  CAS  Google Scholar 

  • Espagne E, Vasnier C, Storlazzi A, Kleckner NE, Silar P, Zickler D, Malagnac F (2011) Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis. Proc Natl Acad Sci U S A 108:10614

    Article  PubMed  CAS  Google Scholar 

  • Esser K (1954) Sur le déterminisme génétique d’un nouveau type d’incompatibilité chez Podospora. C R Acad Sci Paris 238:1731

    Google Scholar 

  • Esser K (1963) Die Wirkungsweise von Antiseren auf die Phenoloxydasen von Podospora anserina. Naturwissenschaften 50:576

    Article  CAS  Google Scholar 

  • Esser K (1969) The influence of pH on rhytmic mycelial growth in Podospora anserina. Mycologia 61:1008

    Article  Google Scholar 

  • Esser K, Graw D (1980) Homokaryotic fruiting in the bipolar-incompatible ascomycete Podospora anserina. Mycologia 72:534

    Article  Google Scholar 

  • Esser K, Prillinger H (1972) A new technique to use spermatia for the production of mutants in Podospora. Mutat Res 16:417

    Article  PubMed  CAS  Google Scholar 

  • Fischer F, Weil A, Hamann A, Osiewacz HD (2013) Human CLPP reverts the longevity phenotype of a fungal ClpP deletion strain. Nat Commun 4:1397

    Article  PubMed  CAS  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Gorecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kues U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Duenas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715

    Article  PubMed  CAS  Google Scholar 

  • Franke G (1962) Versuche zur Genomverdoppelung des Ascomyceten Podospora anserina. Z Vererbungsl 93:109

    Google Scholar 

  • Furuya K, Udagawa SI (1972) Coprophilous pyrenomycetes from Japan I. J Gen Appl Microbiol 18:433

    Article  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859

    Article  PubMed  CAS  Google Scholar 

  • Geydan TD, Debets AJ, Verkley GJ, van Diepeningen AD (2012) Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Mol Ecol 21:2816

    Article  PubMed  Google Scholar 

  • Graïa F, Lespinet O, Rimbault B, Dequard-Chablat M, Coppin E, Picard M (2001) Genome quality control: RIP (repeat-induced point mutation) comes to Podospora. Mol Microbiol 40:586

    Article  PubMed  Google Scholar 

  • Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S, Maddelein ML, Ness F, Cescau S, Soragni A, Leitz D, Saupe SJ, Riek R (2010) The mechanism of prion inhibition by HET-S. Mol Cell 38:889

    Article  PubMed  CAS  Google Scholar 

  • Groebe K, Krause F, Kunstmann B, Unterluggauer H, Reifschneider NH, Scheckhuber CQ, Sastri C, Stegmann W, Wozny W, Schwall GP, Poznanovic S, Dencher NA, Jansen-Durr P, Osiewacz HD, Schrattenholz A (2007) Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 42:887

    Article  PubMed  CAS  Google Scholar 

  • Grognet P, Lalucque H, Silar P (2012) The PaAlr1 magnesium transporter is required for ascospore development in Podospora anserina. Fungal Biol 116:1111

    Article  PubMed  CAS  Google Scholar 

  • Grossetete S, Labedan B, Lespinet O (2010) FUNGIpath: a tool to assess fungal metabolic pathways predicted by orthology. BMC Genomics 11:81

    Article  PubMed  CAS  Google Scholar 

  • Haedens V, Malagnac F, Silar P (2005) Genetic control of an epigenetic cell degeneration syndrome in Podospora anserina. Fungal Genet Biol 42:564

    Article  PubMed  CAS  Google Scholar 

  • Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765

    Article  PubMed  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614

    Article  PubMed  CAS  Google Scholar 

  • Jamet-Vierny C, Begel O, Belcour L (1980) Senescence in Podospora anserina: amplification of a mitochondrial DNA sequence. Cell 21:189

    Article  PubMed  CAS  Google Scholar 

  • Jamet-Vierny C, Rossignol M, Haedens V, Silar P (1999) What triggers senescence in Podospora anserina? Fungal Genet Biol 27:26

    Article  PubMed  CAS  Google Scholar 

  • Jamet-Vierny C, Debuchy R, Prigent M, Silar P (2007) IDC1, a Pezizomycotina-specific gene that belongs to the PaMpk1 MAP kinase transduction cascade of the filamentous fungus Podospora anserina. Fungal Genet Biol 44:1219

    Article  PubMed  CAS  Google Scholar 

  • Kicka S, Bonnet C, Sobering AK, Ganesan LP, Silar P (2006) A mitotically inheritable unit containing a MAP kinase module. Proc Natl Acad Sci U S A 103:13445

    Article  PubMed  CAS  Google Scholar 

  • Labarere J, Bernet J (1979) A pleiotropic mutation affecting protoperithecium formation and ascospore outgrowth in Podospora anserina. J Gen Microbiol 113:19

    Article  CAS  Google Scholar 

  • Lalucque H, Silar P (2000) In vivo labelling of functional ribosomes reveals spatial regulation during starvation in Podospora anserina. BMC Genet 1:3

    Article  PubMed  CAS  Google Scholar 

  • Lalucque H, Malagnac F, Brun S, Kicka S, Silar P (2012) A non-Mendelian MAPK-generated hereditary unit controlled by a second MAPK pathway in Podospora anserina. Genetics 191:419

    Article  PubMed  Google Scholar 

  • Lambou K, Malagnac F, Barbisan C, Tharreau D, Lebrun MH, Silar P (2008) The crucial role during ascospore germination of the Pls1 tetraspanin in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes. Eukaryot Cell 7:1809

    Article  PubMed  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078

    Article  PubMed  CAS  Google Scholar 

  • Lorin S, Dufour E, Boulay J, Begel O, Marsy S, Sainsard-Chanet A (2001) Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant of Podospora anserina. Mol Microbiol 42:1259

    Article  PubMed  CAS  Google Scholar 

  • Lozovaya VV, Lygin AV, Zernova OV, Li S, Widholm JM, Hartman GL (2006) Lignin degradation by Fusarium solani f. sp. glycines. Plant Dis 90:77

    Article  CAS  Google Scholar 

  • Lundqvist N (1972) Nordic Sordariaceae s. lat. Akademisk avhandling, Uppsala

    Google Scholar 

  • Lysek G (1976) Formation of perithecia in colonies of Podospora anserina. Planta 133:81

    Article  Google Scholar 

  • Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ (2002) Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci U S A 99:7402

    Article  PubMed  CAS  Google Scholar 

  • Malagnac F, Lalucque H, Lepere G, Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41:982

    Article  PubMed  CAS  Google Scholar 

  • Malagnac F, Bidard F, Lalucque H, Brun S, Lambou K, Lebrun MH, Silar P (2008) Convergent evolution of morphogenetic processes in fungi: role of tetraspanins and NADPH oxidases 2 in plant pathogens and saprobes. Comm Int Biol 1:181

    Google Scholar 

  • Malagnac F, Fabret C, Prigent M, Rousset JP, Namy O, Silar P (2013) A Rab-GDI complex dissociation factor expressed through translational frameshifting in filamentous ascomycetes. Plos One (in press)

    Google Scholar 

  • Marcou D (1961) Notion de longévité et nature cytoplasmique du déterminant de la sénescence chez quelques champignons. Ann Sci Natur Bot Paris Sér 12, 2:653

    Google Scholar 

  • Marcou D, Picard-Bennoun M, Simonet JM (1982) Genetic map of Podospora anserina. In: O’Brien S (ed) Genetic maps. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Martins M, Rodrigues-Lima F, Dairou J, Lamouri A, Malagnac F, Silar P, Dupret JM (2009) An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies. J Biol Chem 284:18726

    Article  PubMed  CAS  Google Scholar 

  • Matasyoh JC, Dittrich B, Schueffler A, Laatsch H (2011) Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae. Parasitol Res 108:561

    Article  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248

    Article  PubMed  CAS  Google Scholar 

  • Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Poggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kuck U, Freitag M (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6:e1000891

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz HD, Brust D, Hamann A, Kunstmann B, Luce K, Muller-Ohldach M, Scheckhuber CQ, Servos J, Strobel I (2010) Mitochondrial pathways governing stress resistance, life, and death in the fungal aging model Podospora anserina. Ann N Y Acad Sci 1197:54

    Article  PubMed  CAS  Google Scholar 

  • Padieu E, Bernet J (1967) Mode d’action des gènes responsables de l’avortement de certains produits de la méiose chez l’Ascomycète Podospora anserina. C R Acad Sci Paris 264:2300

    CAS  Google Scholar 

  • Paoletti M, Saupe SJ (2009) Fungal incompatibility: evolutionary origin in pathogen defense? Bioessays 31:1201

    Article  PubMed  CAS  Google Scholar 

  • Paoletti M, Saupe SJ, Clave C (2007) Genesis of a fungal non-self recognition repertoire. PLoS One 2:e283

    Article  PubMed  CAS  Google Scholar 

  • Peraza-Reyes L, Arnaise S, Zickler D, Coppin E, Debuchy R, Berteaux-Lecellier V (2011) The importomer peroxins are differentially required for peroxisome assembly and meiotic development in Podospora anserina: insights into a new peroxisome import pathway. Mol Microbiol 82:365

    Article  PubMed  CAS  Google Scholar 

  • Picard M (1973) Genetic evidence for a polycistronic unit of transcription in the complex locus “14” in Podospora anserina. II. Genetic analysis of informational suppressors. Genet Res Camb 21:1

    Article  Google Scholar 

  • Picard M, Debuchy R, Julien J, Brygoo Y (1987) Transformation by integration in Podospora anserina. II. Targeting to the resident locus with cosmids and instability of the transformants. Mol Gen Genet 210:129

    Article  CAS  Google Scholar 

  • Pinan-Lucarre B, Balguerie A, Clave C (2005) Accelerated cell death in podospora autophagy mutants. Eukaryot Cell 4:1765

    Article  PubMed  CAS  Google Scholar 

  • Pinan-Lucarre B, Paoletti M, Clave C (2007) Cell death by incompatibility in the fungus Podospora. Semin Cancer Biol 17:101

    Article  PubMed  CAS  Google Scholar 

  • Poggeler S (2011) Evolution of multicopper oxidase genes in coprophilous and non-coprophilous members of the order sordariales. Curr Genomics 12:95

    Article  PubMed  Google Scholar 

  • Poggeler S, Risch S, Kuck U, Osiewacz HD (1997) Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147:567

    PubMed  CAS  Google Scholar 

  • Pointing SB, Parungao MM, Hyde KD (2003) Production of wood-decay enzymes, mass loss and lignin solubilization in wood by tropical Xylariaceae. Mycol Res 107:231

    Article  PubMed  CAS  Google Scholar 

  • Razanamparany V, Bégueret J (1988) Non-homologous integration of transforming vectors in the fungus Podospora anserina: sequences of junctions at the integration sites. Gene 74:399

    Article  PubMed  CAS  Google Scholar 

  • Regalado V, Rodriguez A, Perestelo F, Carnicero A, De La Fuente G, Falcon MA (1997) Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 63:3716

    PubMed  CAS  Google Scholar 

  • Rexroth S, Poetsch A, Rogner M, Hamann A, Werner A, Osiewacz HD, Schafer ER, Seelert H, Dencher NA (2012) Reactive oxygen species target specific tryptophan site in the mitochondrial ATP synthase. Biochim Biophys Acta 1817:381

    Article  PubMed  CAS  Google Scholar 

  • Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844

    Article  PubMed  CAS  Google Scholar 

  • Rizet G (1939) De l’hérédité du caractère absence de pigment dans le mycélium d’un ascomycète du genre Podospora. C R Acad Sci Paris 209:771

    Google Scholar 

  • Rizet G (1941) Sur l’analyse génétique des asques du Podospora anserina. C R Acad Sci Paris 212:59

    Google Scholar 

  • Rizet G (1952) Les phénomènes de barrage chez Podospora anserina. I. Analyse génétique des barrages entre souches S and s. Rev Cytol Biol Veg 13:51

    Google Scholar 

  • Rizet G (1953) Sur l’impossibilité d’obtenir la multiplication végétative ininterrompue et illimitée de l’Ascomycète Podospora anserina. C R Acad Sci Paris 237:838

    PubMed  CAS  Google Scholar 

  • Rizet G, Delannoy G (1950) Sur la production par des hétérozygotes monofactoriels de Podospora anserina de gamétophytes phénotypiquement différents des gamétophytes parentaux. C R Acad Sci Paris 231:588

    Google Scholar 

  • Rizet G, Esser K (1953) Sur des phénomènes d’incompatibilité entre souches d’origines différentes chez Podospora anserina. C R Acad Sci Paris 237:760

    PubMed  CAS  Google Scholar 

  • Rodriguez A, Falcon MA, Carcinero A, Perestelo F, De la Fuente G, Trojanowski J (1996) Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Appl Microbiol Biotechnol 45:399

    Article  CAS  Google Scholar 

  • Rossignol M, Silar P (1996) Genes that control longevity in Podospora anserina. Mech Ageing Dev 90:183

    Article  PubMed  CAS  Google Scholar 

  • Ruprich-Robert G, Berteaux-Lecellier V, Zickler D, Panvier-Adoutte A, Picard M (2002) Identification of six loci in which mutations partially restore peroxisome biogenesis and/or alleviate the metabolic defect of pex2 mutants in Podospora. Genetics 161:1089

    PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Osiewacz HD (2008) Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Genet Genomics 280:365

    Article  PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nystrom T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99

    Article  PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Houthoofd K, Weil AC, Werner A, De Vreese A, Vanfleteren JR, Osiewacz HD (2011) Alternative oxidase dependent respiration leads to an increased mitochondrial content in two long-lived mutants of the ageing model Podospora anserina. PLoS One 6:e16620

    Article  PubMed  CAS  Google Scholar 

  • Sellem CH, Marsy S, Boivin A, Lemaire C, Sainsard-Chanet A (2007) A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina. Fungal Genet Biol 44:648

    Article  PubMed  CAS  Google Scholar 

  • Sellem CH, Bovier E, Lorin S, Sainsard-Chanet A (2009) Mutations in two zinc-cluster proteins activate alternative respiratory and gluconeogenic pathways and restore senescence in long-lived respiratory mutants of Podospora anserina. Genetics 182:69

    Article  PubMed  CAS  Google Scholar 

  • Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R (2012) The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 10:e1001451

    Article  PubMed  CAS  Google Scholar 

  • Silar P (1995) Two new easy-to-use vectors for transformations. Fungal Genet Newsl 42:73

    Google Scholar 

  • Silar P (2005) Peroxide accumulation and cell death in filamentous fungi induced by contact with a contestant. Mycol Res 109:137

    Article  PubMed  CAS  Google Scholar 

  • Silar P (2011) Grafting as a method for studying development in the filamentous fungus Podospora anserina. Fungal Biol 115:793

    Article  PubMed  CAS  Google Scholar 

  • Silar P (2012) Hyphal interference: self versus non-self fungal recognition and hyphal death. In: Witzany G (ed) Biocommunication of fungi. Springer, Dordrecht

    Google Scholar 

  • Silar P, Haedens V, Rossignol M, Lalucque H (1999) Propagation of a novel cytoplasmic, infectious and deleterious determinant is controlled by translational accuracy in Podospora anserina. Genetics 151:87

    PubMed  CAS  Google Scholar 

  • Silar P, Lalucque H, Vierny C (2001) Cell degeneration in the model system Podospora anserina. Biogerontology 2:1

    Article  PubMed  CAS  Google Scholar 

  • Silar P, Barreau C, Debuchy R, Kicka S, Turcq B, Sainsard-Chanet A, Sellem CH, Billault A, Cattolico L, Duprat S, Weissenbach J (2003) Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing. Fungal Genet Biol 39:250

    Article  PubMed  CAS  Google Scholar 

  • Silar P, Dairou J, Cocaign A, Busi F, Rodrigues-Lima F, Dupret JM (2011) Fungi as a promising tool for bioremediation of soils contaminated with aromatic amines, a major class of pollutants. Nat Rev Microbiol 9:477

    Article  PubMed  CAS  Google Scholar 

  • Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134

    Article  PubMed  CAS  Google Scholar 

  • Stahl U, Tudzynski P, Kuck U, Esser K (1982) Replication and expression of a bacterial–mitochondrial hybrid plasmid in the fungus Podospora anserina. Proc Natl Acad Sci U S A 79:3641

    Article  PubMed  CAS  Google Scholar 

  • Storlazzi A, Gargano S, Ruprich-Robert G, Falque M, David M, Kleckner N, Zickler D (2010) Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell 141:94

    Article  PubMed  CAS  Google Scholar 

  • Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JH, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A 106:22157

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski P, Esser K (1977) Inhibitors of mitochondrial function prevent senescence in the ascomycete Podospora anserina. Mol Gen Genet 153:111

    Article  PubMed  CAS  Google Scholar 

  • Turbe-Doan A, Arfi Y, Record E, Estrada-Alvarado I, Levasseur A (2013) Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Appl Microbiol Biotechnol 97(11):4873–1885

    Article  PubMed  CAS  Google Scholar 

  • Turcq B, Denayrolles M, Bégueret J (1990) Isolation of two allelic incompatibility genes s and S of the fungus Podospora anserina. Curr Genet 17:297

    Article  CAS  Google Scholar 

  • Turgeon BG, Debuchy R (2007) Cochliobolus and podospora: mechanisms of sex determination and the evolution of reproductive lifestyle. In: Heitman J et al (eds) Sex in fungi: molecular determination and evolutionary implications. ASM, Washington, DC

    Google Scholar 

  • van Diepeningen AD, Maas MF, Huberts DH, Goedbloed DJ, Engelmoer DJ, Slakhorst SM, Koopmanschap AB, Krause F, Dencher NA, Sellem CH, Sainsard-Chanet A, Hoekstra RF, Debets AJ (2010) Calorie restriction causes healthy life span extension in the filamentous fungus Podospora anserina. Mech Ageing Dev 131:60

    Article  PubMed  CAS  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523

    Article  PubMed  CAS  Google Scholar 

  • Wolf FA (1912) Spore formation in Podospora anserina (Rahb.) Winter. Ann Myc 10:60

    Google Scholar 

  • Yafetto L, Carroll L, Cui Y, Davis DJ, Fischer MW, Henterly AC, Kessler JD, Kilroy HA, Shidler JB, Stolze-Rybczynski JL, Sugawara Z, Money NP (2008) The fastest flights in nature: high-speed spore discharge mechanisms among fungi. PLoS One 3:e3237

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I would like to thank all members of the Podospora community, especially from the Parisian area, for freely sharing information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Silar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silar, P. (2013). Podospora anserina: From Laboratory to Biotechnology. In: Horwitz, B., Mukherjee, P., Mukherjee, M., Kubicek, C. (eds) Genomics of Soil- and Plant-Associated Fungi. Soil Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39339-6_12

Download citation

Publish with us

Policies and ethics