Skip to main content
Log in

Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60 °C and 5 for CDHcc and 65–70 °C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for biofuel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelkafi S, Ogata H, Barouh N, Fouquet B, Lebrun R, Pina M, Scheirlinckx F, Villeneuve P, Carrière F (2009) Identification and biochemical characterization of a GDSL-motif carboxylester hydrolase from Carica papaya latex. Biochim Biophys Acta 1791:1048–1056

    Article  CAS  Google Scholar 

  • Archer DB, Peberdy JF (1997) The molecular biology of secreted enzyme production by fungi. Crit Rev Biotechnol 17:273–306

    Article  CAS  Google Scholar 

  • Bao W, Renganathan V (1992) Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302:77–80

    Article  CAS  Google Scholar 

  • Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892

    Article  CAS  Google Scholar 

  • Calmels TP, Martin F, Durand H, Tiraby G (1991) Proteolytic events in the processing of secreted proteins in fungi. J Biotechnol 17:51–66

    Article  CAS  Google Scholar 

  • Cannella D, Hsieh CW, Felby C, Jørgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023

    Article  CAS  Google Scholar 

  • Contreras R, Carrez D, Kinghorn JR, van den Hondel CA, Fiers W (1991) Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Biotechnology (New York) 9:378–381

    Article  CAS  Google Scholar 

  • Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237–246

    Article  CAS  Google Scholar 

  • Desriani, Desriani S, Sode K (2010a) Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase. Biochem Biophys Res Commun 391:1246–1250

    Article  CAS  Google Scholar 

  • Desriani, Ferri S, Sode K (2010b) Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli. Biotechnol Lett 32:855–859

    Article  CAS  Google Scholar 

  • Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F (2001) Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb Technol 29:478–489

    Article  CAS  Google Scholar 

  • Durand H, Baron M, Calmels T, Tiraby G (1988a) Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains. FEMS Symp 43:135–152

    CAS  Google Scholar 

  • Durand H, Clanet M, Tiraby G (1988b) Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microbiol Technol 10:341–346

    Article  CAS  Google Scholar 

  • Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9:R77

    Article  Google Scholar 

  • Fang JM, Fowler P, Tomkinson J, Hill CAS (2002) Preparation and characterisation of methylated hemicelluloses from wheat straw. Carbohyd Polym 47:285–293

    Article  CAS  Google Scholar 

  • Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Pagès S, Perret S (2009) The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J 276:3076–3086

    Article  CAS  Google Scholar 

  • Gordon CL, Archer DB, Jeenes DJ, Doonan JH, Wells B, Trinci APJ, Robson GD (2000) A glucoamylase:GFP gene fusion to study protein secretion by individual hyphae of Aspergillus niger. J Microbiol Methods 42:39–48

    Article  CAS  Google Scholar 

  • Gouka RJ, Punt PJ, van den Hondel CA (1997) Glucoamylase gene fusions alleviate limitations for protein production in Aspergillus awamori at the transcriptional and (post)translational levels. Appl Environ Microbiol 63:488–497

    CAS  Google Scholar 

  • Hallberg BM, Bergfors T, Bäckbro K, Pettersson G, Henriksson G, Divne C (2000) A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure 8:79–88

    Article  CAS  Google Scholar 

  • Hallberg BM, Henriksson G, Pettersson G, Divne C (2002) Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J Mol Biol 315:421–434

    Article  CAS  Google Scholar 

  • Harreither W, Sygmund C, Dünhofen E, Vicuña R, Haltrich D, Ludwig R (2009) Cellobiose dehydrogenase from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Appl Environ Microbiol 75:2750–2757

    Article  CAS  Google Scholar 

  • Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77:1804–1815

    Article  CAS  Google Scholar 

  • Henriksson G, Pettersson G, Johansson G, Ruiz A, Uzcategui E (1991) Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem 196:101–106

    Article  CAS  Google Scholar 

  • Henriksson G, Salumets A, Divne C, Pettersson G (1997) Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem J 324:833–838

    CAS  Google Scholar 

  • Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G (1998) Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochim Biophys Acta 1383:48–54

    Article  CAS  Google Scholar 

  • Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113

    Article  CAS  Google Scholar 

  • Kremer SM, Wood PM (1992) Production of Fenton’s reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Eur J Biochem 208:807–814

    Article  CAS  Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015

    Article  CAS  Google Scholar 

  • Lequart C, Nuzillard JM, Kurek B, Debeire P (1999) Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides. Carbohyd Res 319:102–111

    Article  CAS  Google Scholar 

  • Levasseur A, Pagès S, Fierobe HP, Navarro D, Punt P, Belaïch JP, Asther M, Record E (2004) Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Appl Environ Microbiol 70:6984–6991

    Article  CAS  Google Scholar 

  • Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E (2008) FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 45:638–645

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ludwig R, Salamon A, Varga J, Zámocky M, Peterbauer CK, Kulbe KD, Haltrich D (2004) Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa. Appl Microbiol Biotechnol 64:213–222

    Article  CAS  Google Scholar 

  • Mason MG, Wilson MT, Ball A, Nicholls P (2002) Oxygen reduction by cellobiose oxidoreductase: the role of the haem group. FEBS Lett 518:29–32

    Article  CAS  Google Scholar 

  • Mason MG, Nicholls P, Divne C, Hallberg BM, Henriksson G, Wilson MT (2003) The heme domain of cellobiose oxidoreductase: a one-electron reducing system. Biochim Biophys Acta, Bioenerg 1604:47–54

    Article  CAS  Google Scholar 

  • Morpeth FF (1985) Some properties of cellobiose oxidase from the white rot fungus Sporotrichum pulverulentum. Biochem J 228:557–564

    CAS  Google Scholar 

  • Mowat CG, Gazur B, Campbell LP, Chapman SK (2010) Flavin-containing heme enzymes. Arch Biochem Biophys 493:37–52

    Article  CAS  Google Scholar 

  • Navarro D, Couturier M, Damasceno G, da Silva G, Berrin JG, Rouau X, Asther M, Bignon C (2010) Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microb Cell Fact 9:58

    Article  Google Scholar 

  • Nutt A, Salumets A, Henriksson G, Sild V, Johansson G (1997) Conversion of O2 species by cellobiose dehydrogenase (cellobiose oxidase) and glucose oxidase a comparison. Biotechnol Lett 19:379–384

    Article  CAS  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  CAS  Google Scholar 

  • Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406

    Article  CAS  Google Scholar 

  • Porath J, Carlsson OI, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    Article  CAS  Google Scholar 

  • Punt PJ, van den Hondel CA (1992) Transformation of filamentous fungi based on hygromycin B and phleomycine resistance markers. Methods Enzymol 216:447–457

    Article  CAS  Google Scholar 

  • Punt PJ, Drint-Kuijvenhoven A, Lokman BC, Spencer JA, Jeenes D, Archer DA, van den Hondel CAMJJ (2003) The role of the Aspergillus niger furin-type protease gene in processing of fungal proproteins and fusion proteins. Evidence for alternative processing of recombinant (fusion-) proteins. J Biotechnol 106:23–32

    Article  CAS  Google Scholar 

  • Punt PJ, Levasseur A, Visser H, Wery J, Record E (2011) Fungal protein production: design and production of chimeric proteins. Annu Rev Microbiol 65:57–69

    Article  CAS  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  Google Scholar 

  • Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, Burns C, Canbäck B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC, Farman ML, Gathman AC, Goldberg J, Guigó R, Hoegger PJ, Hooker JB, Huggins A, James TY, Kamada T, Kilaru S, Kodira C, Kües U, Kupfer D, Kwan HS, Lomsadze A, Li W, Lilly WW, Ma LJ, Mackey AJ, Manning G, Martin F, Muraguchi H, Natvig DO, Palmerini H, Ramesh MA, Rehmeyer CJ, Roe BA, Shenoy N, Stanke M, Ter-Hovhannisyan V, Tunlid A, Velagapudi R, Vision TJ, Zeng Q, Zolan ME, Pukkila PJ (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107:11889–11894

    Article  CAS  Google Scholar 

  • Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39:897–902

    Article  CAS  Google Scholar 

  • Tuomela M, Hatakka A, Raiskila S, Vikman M, Itävaara M (2001) Biodegradation of radiolabelled synthetic lignin (14C-DHP) and mechanical pulp in a compost environment. Appl Microbiol Biotechnol 55:492–499, Erratum in: Appl Microbiol Biotechnol 57:441

    Article  CAS  Google Scholar 

  • van Hartingsveldt W, Mattern IE, van Zeijl CM, Pouwells PH, van den Hondel CA (1987) Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet 206:71–75

    Article  Google Scholar 

  • Yoshida M, Ohira T, Igarashi K, Nagasawa H, Aida K, Hallberg BM, Divne C, Nishino T, Samejima M (2001) Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem 65:2050–2057

    Article  CAS  Google Scholar 

  • Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D (2006) Cellobiose dehydrogenase - a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protoc Pept Sci 7:255–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Régine Lebrun and Sabrina Lignon, IBSM-CNRS, Plate-forme Protéomique, Marseille, France for in-gel tryptic digestion and protein identification by mass spectrometry. This study was funded by the French National Research Agency (ANR, program E-TRICEL 344 ANR-07-BIOE-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Levasseur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turbe-Doan, A., Arfi, Y., Record, E. et al. Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Appl Microbiol Biotechnol 97, 4873–4885 (2013). https://doi.org/10.1007/s00253-012-4355-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4355-y

Keywords

Navigation