Toward Practical Group Encryption

  • Laila El Aimani
  • Marc Joye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

A group encryption scheme allows anyone to form a ciphertext for a given group member while keeping the receiver’s identity private. At the same time, the encryptor is capable of proving that some (anonymous) group member is able to decrypt the ciphertext and, optionally, that the corresponding plaintext satisfies some a priori relation (to prevent sending bogus messages). Finally, in case of a dispute, the identity of the intended receiver can be recovered by a designated authority. In this paper, we abstract a generic approach to construct group encryption schemes. We also introduce several new implementation tricks. As a result, we obtain group encryption schemes that significantly improve the state of the art. Both interactive and non-interactive constructions are considered.

Keywords

Group encryption Canetti-Halevi-Katz paradigm homomorphic encryption structure-preserving signatures (non)-interactive zero-knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    El Aimani, L., Joye, M.: Toward practical group encryption. IACR Cryptology ePrint Archive, Report 2012/155 (2012), http://eprint.iacr.org/
  3. 3.
    Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cash, D.M., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    Fuchsbauer, G.: Automorphic Signatures in Bilinear Groups and an Application to Round-Optimal Blind Signatures. Cryptology ePrint Archive, Report 2009/320 (2009), http://eprint.iacr.org/
  9. 9.
    Groth, J.: Homomorphic Trapdoor Commitments to Group Elements. IACR Cryptology ePrint Archive 2009, 7 (2009)Google Scholar
  10. 10.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Definitions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 171–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Qin, B., Wu, Q., Susilo, W., Mu, Y.: Publicly verifiable privacy-preserving group decryption. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 72–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laila El Aimani
    • 1
  • Marc Joye
    • 2
  1. 1.GemaltoMeudon CedexFrance
  2. 2.TechnicolorCesson-Sévigné CedexFrance

Personalised recommendations