Advertisement

Diffeomorphic Spectral Matching of Cortical Surfaces

  • Herve Lombaert
  • Jon Sporring
  • Kaleem Siddiqi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

Accurate matching of cortical surfaces is necessary in many neuroscience applications. In this context diffeomorphisms are often sought, because they facilitate further statistical analysis and atlas building. Present methods for computing diffeomorphisms are based on optimizing flows or on inflating surfaces to a common template, but they are often computationally expensive. It typically takes several hours on a conventional desktop computer to match a single pair of cortical surfaces having a few hundred thousand vertices. We propose a very fast alternative based on an application of spectral graph theory on a novel association graph. Our symmetric approach can generate a diffeomorphic correspondence map within a few minutes on high-resolution meshes while avoiding the sign and multiplicity ambiguities of conventional spectral matching methods. The eigenfunctions are shared between surfaces and provide a smooth parameterization of surfaces. These properties are exploited to compute differentials on highly folded cortical surfaces. Diffeomorphisms can thus be verified and invalid surface folding detected. Our method is demonstrated to attain a vertex accuracy that is at least as good as that of FreeSurfer and Spherical Demons but in only a fraction of their processing time. As a practical experiment, we construct an unbiased atlas of cortical surfaces with a speed several orders of magnitude faster than current methods.

Keywords

Spectral Decomposition Cortical Surface Matching Accuracy Initial Reference Spectral Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Talairach, J., Szikla, G., Tournoux, P., Prosalentis, A., Bordas-Ferrier, M., Covello, L., Iacob, M., Mempel, E.: Atlas stereotaxique du telencephale. Masson (1967)Google Scholar
  2. 2.
    Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage (2000)Google Scholar
  3. 3.
    Drury, H., Van Essen, D., Joshi, S., Miller, M.: Analysis and comparison of areal partitioning schemes using 2-D fluid deformations. NeuroImage 3 (1996)Google Scholar
  4. 4.
    Van Essen, D., Drury, H.: Structural and functional analyses of human cerebral cortex using a surface-based atlas. Neuroscience 17(18) (1997)Google Scholar
  5. 5.
    Thompson, P., Toga, A.W.: A surface-based technique for warping three-dimensional images of the brain. TMI 15(4) (1996)Google Scholar
  6. 6.
    Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for cortical surface. Human Brain Mapping 8 (1999)Google Scholar
  7. 7.
    Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, T., Mohlberg, H., Amunts, K., Zilles, K.: Cortical folding patterns and predicting cytoarchitecture. Cereb. Cortex 18(8) (2007)Google Scholar
  8. 8.
    Yeo, T., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. TMI 29(3) (2010)Google Scholar
  9. 9.
    Beg, F., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61 (2005)Google Scholar
  10. 10.
    Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. MedIA 13(5) (2009)Google Scholar
  12. 12.
    Segonne, F., Pacheco, J., Fischl, B.: Geometrically accurate Topology-Correction of cortical surfaces using nonseparating loops. TMI 26(4) (2007)Google Scholar
  13. 13.
    Chung, F.: Spectral Graph Theory. AMS (1997)Google Scholar
  14. 14.
    Lombaert, H., Grady, L., Polimeni, J.R., Cheriet, F.: Fast brain matching with spectral correspondence. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 660–673. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Lombaert, H., Grady, L., Polimeni, J.R., Cheriet, F.: FOCUSR: Feature Oriented Correspondence using Spectral Regularization - A Method for Accurate Surface Matching. TPAMI (2012)Google Scholar
  16. 16.
    Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions. IJCV (2009)Google Scholar
  17. 17.
    Niethammer, M., Reuter, M., Wolter, F.-E., Bouix, S., Peinecke, N., Koo, M.-S., Shenton, M.E.: Global Medical Shape Analysis Using the Laplace-Beltrami Spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised registration. In: CVPR (2008)Google Scholar
  19. 19.
    Jain, V., Zhang, H.: Robust 3D shape correspondence in the spectral domain. In: CSMA (2006)Google Scholar
  20. 20.
    Grady, L., Polimeni, J.R.: Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer (2010)Google Scholar
  21. 21.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley (1989)Google Scholar
  22. 22.
    Tlusty, T.: A relation between the multiplicity of the second eigenvalue of a graph Laplacian, Courant’s nodal line theorem and the substantial dimension of tight polyhedral surfaces. Linear Algebra 16 (2010)Google Scholar
  23. 23.
    Colin de Verdiere, Y.: Multiplicités des valeurs propres. Laplaciens discrets et laplaciens continus. Rendiconti di Matematica 13(7) (1993)Google Scholar
  24. 24.
    Belkin, M., Niyogi, P.: Convergence of Laplacian eigenmaps. In: NIPS (2006)Google Scholar
  25. 25.
    Nielsen, M., Andresen, P.R.: Feature displacement interpolation. In: ICIP (1998)Google Scholar
  26. 26.
    Studholme, C., Cardenas, V.: A template free approach to volumetric spatial normalization of brain anatomy. Pattern Recogn. Lett. 25(10) (2004)Google Scholar
  27. 27.
    Zöllei, L., Learned-Miller, E., Grimson, W., Wells, W.: Efficient population registration of 3D data. In: Liu, Y., Jiang, T.-Z., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 291–301. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: A convergence study. CVIU 77(2) (2000)Google Scholar
  29. 29.
    Christensen, G., Johnson, H.: Invertibility and transitivity analysis for nonrigid image registration. J. Elec. Im. 12(1) (2003)Google Scholar
  30. 30.
    Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14(1) (2004)Google Scholar
  31. 31.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. TPAMI 18(4) (1996)Google Scholar
  32. 32.
    Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. TPAMI 28(4) (2006)Google Scholar
  33. 33.
    Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Computer Graphics Forum 29(5) (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Herve Lombaert
    • 1
  • Jon Sporring
    • 1
    • 2
  • Kaleem Siddiqi
    • 1
  1. 1.Centre for Intelligent MachinesMcGill UniversityMontrealCanada
  2. 2.eScience Center, Computer ScienceUniversity of CopenhagenDenmark

Personalised recommendations