Skip to main content

Adaptation of Rice to Flooded Soils

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 75))

Abstract

This paper and its companion (Colmer et al., 2014) review research on the adaptation of rice (Oryza sativa L.) to the wide range of semi-aquatic environments in which it grows. The paper considers well-regulated flooding to 5–20 cm depth; the companion considers deeper flooding in rainfed conditions. Flooded environments are dominated by the very slow diffusion of gases in water and the resulting changes in soil chemical and biological conditions. Adaptations to these potentially toxic conditions hinge on an optimum ventilation network in the plant, providing O2 to the roots and rhizosphere, both being critical for favourable nutrition and tolerance of reduced-soil toxins. Rice has become a model for studying adaptation to flooded soils and flood-prone environments because of its relatively simple genome and large genetic diversity, and its extreme tolerance of flooded soils compared with other crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anjos TG, Hahn CEW (2008) The development of a membrane-covered microelectrode array gas sensor for oxygen and carbon dioxide measurement. Sens Actuators B Chem 135:224–229

    Article  CAS  Google Scholar 

  • Armstrong W (1971) Radial oxygen loss from intact rice roots as affected by distance from the root apex, respiration and waterlogging. Physiol Plant 25:192–197

    Article  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–332

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulphide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96:625–638

    Article  PubMed  CAS  Google Scholar 

  • Armstrong W, Beckett PM (1987) Internal aeration and the development of stelar anoxia in submerged roots. A multishelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol 105:221–245

    Article  Google Scholar 

  • Armstrong W, Webb T (1985) A critical oxygen pressure for root extension in rice. J Exp Bot 36:1573–1582

    Article  Google Scholar 

  • Armstrong W, Armstrong J, Beckett PM (1990) Measurement and modelling of oxygen release from roots of Phragmites australis. In: Cooper P, Finklater BC (eds) The use of constructed wetlands in water pollution control. Pergamon, Oxford, UK, pp 41–54

    Google Scholar 

  • Armstrong W, Armstrong J, Beckett PM (1991) Convective flow in wetland plant aeration. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Publishing Company, The Hague, pp 283–302

    Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM (1992) Phragmites australis: venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120:197–207

    Article  Google Scholar 

  • Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot 86:687–703

    Article  Google Scholar 

  • Arnold T, Kirk GJD, Wissuwa W, Frei M, Zhao F-J, Mason TFD, Weiss DJ (2010) Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant Cell Environ 33:370–381

    Article  PubMed  CAS  Google Scholar 

  • Balkos KD, Britto DT, Kronzucker HJ (2010) Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72). Plant Cell Environ 33:23–34

    PubMed  CAS  Google Scholar 

  • Barber DA, Ebert M, Evans NTS (1961) The movement of 15O through barley and rice plants. J Exp Bot 13:397–403

    Article  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    Article  CAS  Google Scholar 

  • Beckett PM, Armstrong W, Justin SHFW, Armstrong J (1988) On the relative importance of convective and diffusive gas flows in plant aeration. New Phytol 110:463–468

    Article  Google Scholar 

  • Bedford BL, Bouldin DR, Beliveau BD (1991) Net oxygen and carbon dioxide balances in solutions bathing roots of wetland plants. J Ecol 79:943–959

    Article  Google Scholar 

  • Begg CBM, Kirk GJD, MacKenzie AF, Neue H-U (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128:469–477

    Article  CAS  Google Scholar 

  • Bertani A, Reggiani R (1991) Anaerobic metabolism in rice roots. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic, The Hague, pp 187–199

    Google Scholar 

  • Blom CWPM, Voesenek LACJ (1996) Flooding: the survival strategies of plants. Trends Ecol Evol 11:290–295

    Article  PubMed  CAS  Google Scholar 

  • Bouldin DR (1968) Models for describing the diffusion of oxygen and other mobile constituents across the mud-water interface. J Ecol 56:77–87

    Article  Google Scholar 

  • Bouldin DR (1989) A multiple ion uptake model. J Soil Sci 40:309–319

    Article  CAS  Google Scholar 

  • Brandon AM, Mikkelsen DS (1979) Phosphorus transformations in alternately flooded California soils. I. Cause of plant phosphorus deficiency in rice rotation crops and correction methods. Soil Sci Soc Am J 43:989–994

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Brix H, Sorrell BK, Orr P (1992) Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol Oceanogr 37:1420–1433

    Article  Google Scholar 

  • Butterbach-Bahl K, Papen H, Rennenberg H (2000) Scanning electron microscopy analysis of the aerenchyma in two rice cultivars. Phyton 40:43–55

    Google Scholar 

  • Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156:1202–1216

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD (2003a) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deepwater rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD (2003b) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Pedersen O (2008) Oxygen dynamics in submerged rice (Oryza sativa). New Phytol 178:326–334

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  Google Scholar 

  • Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J Exp Bot 49:1431–1436

    CAS  Google Scholar 

  • Colmer TD, Cox MCH, Voesenek LACJ (2006) Root aeration in rice (Oryza sativa L.): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol 170:767–778

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Greenway H, Ismail AM, Kirk GJD, Atwell BJ (2014) Physiological mechanisms of flooding tolerance in rice: transient complete submergence and prolonged standing water. Prog Bot 75. doi: 10.1007/978-3-642-38797-5_8

  • Dacey JWH (1980) Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210:1017–1019

    Article  PubMed  CAS  Google Scholar 

  • Darwent MJ, Armstrong W, Armstrong J, Beckett PM (2003) Exploring the radial and longitudinal aeration of primary maize roots by means of Clark-type oxygen micro-electrodes. Russ J Plant Physiol 50:722–732

    Article  CAS  Google Scholar 

  • Dobermann A, Fairhurst T (2000) Rice: nutrient disorders and nutrient management. Potash & Phosphate Institute, Singapore and International Rice Research Institute, Manila

    Google Scholar 

  • Doi K, Yasui H, Yoshimara A (2008) Genetic variation in rice. Curr Opin Plant Biol 11:144–148

    Article  PubMed  CAS  Google Scholar 

  • Drew MC, Saglio PH, Pradet A (1985) Larger adenylate energy-charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved oxygen transport. Planta 165:51–58

    Article  CAS  Google Scholar 

  • Ellis JR (1998) Post flood syndrome and vesicular-arbuscular mycorrhizal fungi. J Prod Agric 11:200–204

    Article  Google Scholar 

  • Felle HH (1996) Control of cytoplasmic pH under anoxic conditions and its implication for plasma membrane proton transport in Medicago sativa root hairs. J Exp Bot 47:967–973

    Article  CAS  Google Scholar 

  • Fisher RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:S85–S98

    Google Scholar 

  • Flessa H, Fischer WR (1993) Plant-induced changes in the redox potential of rice rhizospheres. Plant Soil 143:55–60

    Article  Google Scholar 

  • Frei M, Wang YX, Ismail AM, Wissuwa M (2010) Biochemical factors conferring shoot tolerance to oxidative stress in rice grown in low zinc soil. Funct Plant Biol 37:74–84

    Article  CAS  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Sang T (2007) Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev 17:533–538

    Article  PubMed  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Gibbs J, Turner DW, Armstrong W, Darwent MJ, Greenway H (1998) Response to oxygen deficiency in primary roots of maize. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem. Aust J Plant Physiol 25:745–758

    Article  CAS  Google Scholar 

  • Gilbert B, Assmus B, Hartmann A, Frenzel P (1998) In situ localization of two methanotrophic strains in the rhizosphere of rice plants. FEMS Microbiol Ecol 25:117–128

    CAS  Google Scholar 

  • Greenland DJ (1997) The sustainability of rice farming. CABI, Wallingford

    Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and for energy consuming processes. Funct Plant Biol 30:999–1030

    Article  CAS  Google Scholar 

  • Greenway H, Armstrong W, Colmer TD (2006) Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot 98:9–32

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London, pp 135–189

    Chapter  Google Scholar 

  • Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han CD, Upadhyaya N, Ramachandran S, Zhang QF, Pereira A, Sundaresan V, Leung H (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    Article  PubMed  CAS  Google Scholar 

  • Hojberg O, Sorensen J (1993) Micro gradients of microbial oxygen consumption in a barley rhizosphere system. Appl Environ Microbiol 59:431–437

    PubMed  CAS  Google Scholar 

  • Huguenin-Elie O, Kirk GJD, Frossard E (2003) Phosphorus uptake by rice from soil that is flooded, drained or flooded then drained. Eur J Soil Sci 54:77–90

    Article  CAS  Google Scholar 

  • Impa SM, Johnson-Beebout SE (2012) Integrating soil chemistry and plant physiology research to meet the related challenges of mitigating zinc deficiency and achieving high grain Zn in rice. Plant Soil 361:3–41

    Article  CAS  Google Scholar 

  • Insalud N, Bell RW, Colmer TD, Rerkasem B (2006) Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann Bot 98:995–1004

    Article  PubMed  CAS  Google Scholar 

  • IRRI (1982) Terminology for rice growing environments. International Rice Research Institute, Manila

    Google Scholar 

  • IRRI (1993) Rice research in a time of change. International Rice Research Institute, Manila

    Google Scholar 

  • IRRI (2002) Rice almanac, 3rd edn. International Rice Research Institute, Manila

    Google Scholar 

  • IRRI (2010) Bringing hope, improving lives. IRRI’s strategic plan 2007–2015. International Rice Research Institute, Manila

    Google Scholar 

  • Ishizawa K, Murakami S, Kawaakami Y, Kuramochi H (1999) Growth and energy status of arrowhead tubers, pondweed turions and rice seedlings under anoxic conditions. Plant Cell Environ 22:505–514

    Article  Google Scholar 

  • Ismail AM, Johnson DE, Ella ES, Vergara GV, Baltazar AM (2012) Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB Plants. doi:10.1093/aobpla/pls019

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91:227–241

    Article  PubMed  CAS  Google Scholar 

  • Jung K-H, An G, Ronald PC (2008) Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 9:91–101

    PubMed  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Article  Google Scholar 

  • Justin SHFW, Armstrong W (1991) Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol 118:49–62

    Article  CAS  Google Scholar 

  • Kende H, van der Knaap E, Cho HT (1998) Deep water rice: a model to study stem elongation. Plant Physiol 118:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RA, Barrett SCH, van der Zee D, Rumpho ME (1980) Germination and seedling growth under anaerobic conditions in Echinochloa crus-galli (barnyard grass). Plant Cell Environ 3:243–248

    Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kirk GJD (2003) Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol 159:185–194

    Article  CAS  Google Scholar 

  • Kirk GJD (2004) The biogeochemistry of submerged soils. Wiley, Chichester

    Book  Google Scholar 

  • Kirk GJD, Bajita JB (1995) Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytol 131:129–137

    Article  CAS  Google Scholar 

  • Kirk GJD, Bouldin DR (1991) Speculations on the operation of the rice root system in relation to nutrient uptake. In: de Vries Penning FWT, Van Laar HH, Kropff MJ (eds) Simulation and systems analysis for rice production (SARP). Pudoc, Wageningen, pp 195–203

    Google Scholar 

  • Kirk GJD, Du LV (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200

    Article  CAS  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646

    Article  PubMed  CAS  Google Scholar 

  • Kirk GJD, Saleque MA (1995) Solubilization of phosphate by rice plants growing in reduced soil: prediction of the amount solubilized and the resultant increase in uptake. Eur J Soil Sci 46:247–255

    Article  Google Scholar 

  • Kirk GJD, Solivas JL (1997) On the extent to which root properties and transport through the soil limit nitrogen uptake by lowland rice. Eur J Soil Sci 48:613–621

    Article  CAS  Google Scholar 

  • Kordan HA (1974) Patterns of shoot and root growth in rice seedlings germinating in water. J Appl Ecol 11:685–690

    Article  Google Scholar 

  • Kotula L, Ranathunge K, Steudle E (2009a) Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration. New Phytol 184:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kotula L, Ranathunge K, Schreiber L, Steudle E (2009b) Functional and chemical comparison of apoplastic barrier in roots of rice (Oryza sativa L.) grown in aerated and deoxygenated solution. J Exp Bot 60:2155–2167

    Article  PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Kirk GJD, Siddiqi MY, Glass ADM (1998a) Effects of hypoxia on 13NH4 + fluxes in rice roots: kinetics and compartmental analysis. Plant Physiol 116:581–587

    Article  PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Schjoerring JK, Erner Y, Kirk GJD, Siddiqi MY, Glass ADM (1998b) Dynamic interactions between root NH4 + influx and long-distance N translocation in rice: insights into negative feedback processes. Plant Cell Physiol 39:1287–1293

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999) Nitrate-ammonium synergism in rice: a subcellular flux analysis. Plant Physiol 119:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Glass ADM, Siddiqi MY, Kirk GJD (2000) Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol 145:471–476

    Article  CAS  Google Scholar 

  • Kyuma K (2003) Paddy soil science. Kyoto University Press, Kyoto

    Google Scholar 

  • Liu Q, Zhang Q, Burton RA, Shirley NJ, Atwell BJ (2010) Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. Plant Mol Biol 72:47–60

    Article  PubMed  CAS  Google Scholar 

  • McDonald MP, Galway NW, Colmer TD (2002) Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dry land grass species. Plant Cell Environ 25:441–451

    Article  Google Scholar 

  • Matsuo T, Hoshikawa K (1993) Science of the rice plant. I. Morphology. Food and Agriculture Policy Research Center, Tokyo

    Google Scholar 

  • Mazzucotelli A, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431

    Article  CAS  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Raetsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen DS, De Datta SK, Obcemea WN (1978) Ammonia volatilization losses from flooded rice soils. Soil Sci Soc Am J 42:725–730

    Article  CAS  Google Scholar 

  • Miyamoto N, Steudle E, Hirasawa T, Lafitte R (2001) Hydraulic conductivity of rice roots. J Exp Bot 52:1835–1846

    Article  PubMed  CAS  Google Scholar 

  • Molina J, Sikora IM, Garud IN, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108:8351–8356

    Article  PubMed  CAS  Google Scholar 

  • Moormann FR, van Breemen N (1978) Rice: soil, water, land. International Rice Research Institute, Manila

    Google Scholar 

  • Naredo MEB, Juliano AB, Lu B, Jackson MT (1997) Hybridization of AA genome rice species from Asia and Australia I. Crosses and development of hybrids. Genet Resour Crop Evol 44:17–23

    Article  Google Scholar 

  • Pang JY, Newman I, Mendham N, Zhou M, Shabala S (2006) Microelectrode ion and O2 fluxes reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Parlanti S, Kudahettige NP, Lombardi L, Mensuali-Sodi A, Alpi A, Perata P, Pucciariello C (2011) Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann Bot 107:1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Patrick WH Jr, Delaune RD (1972) Characterization of the oxidized and reduced zones in flooded soils. Soil Sci Soc Am Proc 36:573–576

    Article  CAS  Google Scholar 

  • Peng S, Buresh RJ, Huang J et al (2010) Improving nitrogen fertilization in rice by site specific N management. A review. Agron Sustain Dev 30:649–656

    Article  CAS  Google Scholar 

  • Perata P, Alpi A (1993) Plant-responses to anaerobiosis. Plant Sci 93:1–17

    Article  CAS  Google Scholar 

  • Ponnaperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  Google Scholar 

  • Ptashnyk M, Roose T, Jones DL, Kirk GJD (2011) Enhanced zinc uptake by rice through phytosiderophore secretion: a modelling study. Plant Cell Environ 34:2038–2046

    Article  PubMed  CAS  Google Scholar 

  • Quijano-Guerta C, Kirk GJD, Portugal AM, Bartolome VI, McLaren GC (2002) Tolerance of rice germplasm to zinc deficiency. Field Crops Res 76:123–130

    Article  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Kende H (1983) How does deep-water rice solve its aeration problem? Plant Physiol 72:447–454

    Article  PubMed  CAS  Google Scholar 

  • Razafinjara AL (1999) Cation-anion balances and chemical changes in the rhizosphere of rice in an iron toxic soil. PhD thesis, University of the Philippines at Los Baños

    Google Scholar 

  • Revsbech NP, Pederson O, Reichardt W, Briones A (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils 29:379–385

    Article  Google Scholar 

  • Ricard B, Couee I, Raymond P, Saglio PH, Saint-Ges V, Pradet A (1994) Plant metabolism under hypoxia and anoxia. Plant Physiol Biochem 32:1–10

    CAS  Google Scholar 

  • Richardson JL, Vepraskas MJ (eds) (2001) Wetland soils: genesis, hydrology, landscapes, and classification. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Roger PA (1996) Biology and management of the floodwater ecosystem in ricefields. International Rice Research Institute, Manila

    Google Scholar 

  • Rose MT, Rose TJ, Pariasca-Tanaka J, Widodo WM (2011) Revisiting the role of organic acids in the bicarbonate tolerance of zinc-efficient rice genotypes. Funct Plant Biol 38:493–504

    CAS  Google Scholar 

  • Rose MT, Rose TJ, Pariasca-Tanaka J, Yoshihashi T, Neuweger H, Goesmann A, Frei M, Wissuwa M (2012) Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta 236:959–973

    Article  PubMed  CAS  Google Scholar 

  • Rubinigg M, Stulen I, Elzenga JTM, Colmer TD (2002) Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Funct Plant Biol 29:1475–1481

    Article  CAS  Google Scholar 

  • Sabu KK, Abdullah MZ, Lim LS, Wickneswari R (2009) Analysis of heritability and genetic variability of agronomically important traits in Oryza sativa × O. rufipogon cross. Agron Res 7:97–102

    Google Scholar 

  • Sackville-Hamilton NR (2006) How many rice varieties are there? Rice Today 5(4):50

    Google Scholar 

  • Sahrawat KL (2004) Iron toxicity in wetland rice and the role of other nutrients. J Plant Nutr 27:1471–1504

    Article  CAS  Google Scholar 

  • Saleque MA, Kirk GJD (1995) Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol 129:325–336

    Article  CAS  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Setter TL, Kupkanchanakul T, Kupkanchanakul K, Bhekasut P, Wiengweera A, Greenway H (1988) Environmental factors in deepwater rice areas in Thailand: oxygen, carbon dioxide, and ethylene. In: Proceedings of the 1987 international deepwater rice workshop, International Rice Research Institute, Manila, pp 69–80

    Google Scholar 

  • Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99

    Article  PubMed  CAS  Google Scholar 

  • Sorrell BK (1994) Airspace structure and mathematical-modelling of oxygen diffusion, aeration and anoxia in Eleocharis-sphacelata R-BR roots. Aust J Mar Freshw Res 45:1529–1541

    Article  CAS  Google Scholar 

  • Sorrell BK, Armstrong W (1994) On the difficulties of measuring oxygen release by root systems of wetland plants. J Ecol 82:177–183

    Article  Google Scholar 

  • Steffens B, Geske T, Sauter M (2011) Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol 190:369–378

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    Article  PubMed  CAS  Google Scholar 

  • Sweeney M, McCouch S (2007) The complex history of the domestication of rice. Ann Bot 100:951–957

    Article  PubMed  Google Scholar 

  • Thomson CJ, Greenway H (1991) Metabolic evidence for stellar anoxia in maize roots exposed to low O2 concentrations. Plant Physiol 96:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Thomson CJ, Colmer TD, Watkin ELJ, Greenway H (1992) Tolerance of wheat (Triticum aestivum cvs. Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytol 120:335–344

    Article  Google Scholar 

  • Trolldenier G (1988) Visualization of oxidizing power of rice roots and of possible participation of bacteria in iron deposition. Z Pflanzen Boden 151:117–121

    Article  CAS  Google Scholar 

  • Trought MCT, Drew MC (1980) Development of waterlogging damage in wheat seedlings (Triticum-aestivum). 1. Shoot and root growth in relation to changes in the concentrations of dissolved-gases in the soil solution. Plant Soil 54:77–94

    Article  CAS  Google Scholar 

  • van Mensvoort MEF, Lantin RS, Brinkman R, van Breemen N (1985) Toxicities of wetland soils. In: Wetland soils: characterization, classification, and utilization. International Rice Research Institute, Manila, pp 123–138

    Google Scholar 

  • van Raalte MH (1940) On the oxygen supply of rice roots. Ann Jard Bot Buitenzorg 50:99–114

    Google Scholar 

  • van Raalte MH (1944) On the oxidation of the environment by the roots of rice (Oryza sativa L.). Ann Jard Bot Buitenzorg Hors Ser 1:15–34

    Google Scholar 

  • Vaughan DA, Kadowaki K, Kaga A, Tomooka N (2005) On the phylogeny and biogeography of the genus Oryza. Breed Sci 55:113–122

    Article  CAS  Google Scholar 

  • Verhoeven JTA, Setter TL (2010) Agricultural use of wet lands: opportunities and limitations. Ann Bot 105:155–163

    Article  PubMed  Google Scholar 

  • Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and di-cotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245

    Article  Google Scholar 

  • Waters I, Armstrong W, Thompson CJ, Setter TL, Adkins S, Gibbs J, Greenway H (1989) Diurnal changes in radial oxygen loss and ethanol metabolism in roots of submerged and non-submerged rice seedlings. New Phytol 113:439–451

    Article  CAS  Google Scholar 

  • Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) Isotopic discrimination of zinc in higher plants. New Phytol 165:703–710

    Article  PubMed  CAS  Google Scholar 

  • Widodo BMR, Rose T, Frei M, Pariasca-Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, Ismail AM, Wissuwa M (2010) Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytol 186:400–414

    Article  PubMed  CAS  Google Scholar 

  • Wiengweera A, Greenway H (2004) Performance of seminal and nodal roots of wheat in stagnant solution: K+ and P uptake and effects of increasing O2 partial pressures around the shoot on nodal root elongation. J Exp Bot 55:2121–2129

    Article  PubMed  CAS  Google Scholar 

  • Wiengweera A, Greenway H, Thomson CJ (1997) The use of agar nutrient solution to simulate lack of convention in waterlogged soil. Ann Bot 80:115–123

    Article  Google Scholar 

  • Willett IR (1979) The effects of flooding for rice culture on soil chemical properties and subsequent maize growth. Plant Soil 52:373–383

    Article  CAS  Google Scholar 

  • Williams WT, Barber DA (1961) The functional significance of aerenchyma in plants. Symp Soc Exp Biol 15:132–144

    Google Scholar 

  • Winkel A, Colmer TD, Ismail AM, Pedersen O (2013) Internal aeration of paddy field rice (Oryza sativa L.) during complete submergence – importance of light and floodwater O2. New Phytol 197(4):1193–1203. doi:10.1111/nph.12048

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa M, Ae N (2001) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286

    Article  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Xia X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Bill Armstrong for discussions and comments on drafts—his incisive criticisms and constructive suggestions are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. D. Kirk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirk, G.J.D., Greenway, H., Atwell, B.J., Ismail, A.M., Colmer, T.D. (2014). Adaptation of Rice to Flooded Soils. In: Lüttge, U., Beyschlag, W., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38797-5_8

Download citation

Publish with us

Policies and ethics