Skip to main content

Dissolution of Biomass Using Ionic Liquids

  • Chapter
  • First Online:
Structures and Interactions of Ionic Liquids

Part of the book series: Structure and Bonding ((STRUCTURE,volume 151))

Abstract

Ionic liquids (ILs) have been shown to be effective in dissolving cellulose and other biopolymers that are structurally quite different from each other. It would be quite interesting to figure out the common points of the dissolution of structurally different biopolymers in various kinds of ILs. In this chapter, the IL dissolution of pure biopolymers such as cellulose, lignin, hemicellulose, chitin, silk, wool, etc., is reviewed. By analyzing the structures of the biopolymers and those of the ILs, it is concluded that the dissolution of most of these biopolymers (except lignin) in ILs is mainly due to the disruption of the intra- and intermolecular hydrogen bonding in the polymers by the ILs. Both the cations and anions of the ILs influence the dissolution process, although current work suggests the anions have a larger effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biomass (2004) The Need Project, PO BOX, 10101, Manassas

    Google Scholar 

  2. Kim JS, Park SC, Kim JW et al (2010) Production of bioethanol from lignocellulose: status and perspectives in Korea. Bioresour Technol 101:4801–4805

    Article  CAS  Google Scholar 

  3. Wu YQ, Wu SY, Li Y et al (2009) Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw. Energy Fuel 23:5144–5150

    Article  CAS  Google Scholar 

  4. Cao Y, Wang Y, Riley JT et al (2006) A novel biomass air gasification process for producing tar-free higher heating value fuel gas. Fuel Process Technol 87:343–353

    Article  CAS  Google Scholar 

  5. Knauf M, Moniruzzaman M (2004) Lignocellulosic biomass processing: a perspective. Int Sugar J 106:147–150

    CAS  Google Scholar 

  6. Bi W, Tian M, Zhou J et al (2010) Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. J Chromatogr B Anal Technol Biomed Life Sci 878:2243–2248

    Article  CAS  Google Scholar 

  7. Hecht SE, Niehoff RL Narasimhan K et al (2006) Extracting biopolymers from a biomass using ionic liquids. PCT Int. Appl. WO/2006/116126

    Google Scholar 

  8. Leitner W (2004) Recent advances in catalyst immobilization using supercritical carbon dioxide. Pure Appl Chem 76:635–644

    Article  CAS  Google Scholar 

  9. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3691

    Article  CAS  Google Scholar 

  10. Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53

    Article  CAS  Google Scholar 

  11. Matsumoto H, Yanagida M, Tanimoto K et al (2000) Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem Lett 6:922–923

    Google Scholar 

  12. Bosmann A, Datsevich L, Jess A et al (2001) Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun 2494–2495

    Google Scholar 

  13. Hagiwara H, Sugawara Y, Isobe K et al (2004) Immobilization of Pd(OAc)2 in ionic liquid on silica: application to sustainable Mizoroki-Heck reaction. Org Lett 6:2325–2328

    Article  CAS  Google Scholar 

  14. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  15. Adams CJ, Earle MJ, Roberts G et al (1998) Friedel-Crafts reactions in room temperature ionic liquids. Chem Commun 2097–2098

    Google Scholar 

  16. Fischer T, Sethi A, Welton T et al (1999) Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Lett 40:793–796

    Article  CAS  Google Scholar 

  17. Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  18. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  19. Zhang H, Wu J, Zhang J et al (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  20. Ren Q, Wu J, Zhang J et al (2003) Synthesis of 1-allyl-3-methylimidazolium-based room temperature ionic liquid and preliminary study of its dissolving cellulose. Acta Polymer Sinica 3:448–451

    Google Scholar 

  21. Xu AR, Wang JJ, Wang HY (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275

    Article  CAS  Google Scholar 

  22. Feng L, Chen ZL (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5

    Article  Google Scholar 

  23. Ohno H, Fukaya Y (2009) Task specific ionic liquids for cellulose technology. Chem Lett 38:2–7

    Article  CAS  Google Scholar 

  24. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  25. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    Article  CAS  Google Scholar 

  26. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297

    Article  CAS  Google Scholar 

  27. Fukaya Y, Hayashi K, Wada M et al (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  CAS  Google Scholar 

  28. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306

    Article  CAS  Google Scholar 

  29. Wu J, Zhang J, Zhang H et al (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268

    Article  CAS  Google Scholar 

  30. Bose S, Armstrong DW, Petrich JW (2010) Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: a green approach toward the production of biofuels. J Phys Chem B 114:8221–8227

    Article  CAS  Google Scholar 

  31. Bagheri M, Rodríguez H, Swatloski RP et al (2008) Ionic liquid-based preparation of cellulose-dendrimer films as solid supports for enzyme immobilization. Biomacromolecules 9:381–387

    Article  CAS  Google Scholar 

  32. Sun N, Swatloski RP, Maxim ML et al (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290

    Article  CAS  Google Scholar 

  33. Pu YQ, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33

    Article  CAS  Google Scholar 

  34. Lee SH, Doherty TV, Linhardt RJ et al (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  35. Sun N, Rodríguez H, Rahman M et al (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421

    Article  CAS  Google Scholar 

  36. Xie HB, Zhang SB, Li SH (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633

    Article  CAS  Google Scholar 

  37. Prasad K, Murakami M, Kaneko Y et al (2009) Weak gel of chitin with ionic liquid, 1-allyl-3-methylimidazolium bromide. Int J Biol Macromol 45:221–225

    Article  CAS  Google Scholar 

  38. Qin Y, Lu XM, Sun N et al (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971

    Article  CAS  Google Scholar 

  39. Phillips DM, Drummy LF, Conrady DG et al (2004) Dissolution and regeneration of bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126:14350–14351

    Article  CAS  Google Scholar 

  40. Xie HB, Li SH, Zhang SB (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 7:606–608

    Article  CAS  Google Scholar 

  41. Kilpelainen I, Xie H, King A et al (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148

    Article  Google Scholar 

  42. Fort DA, Remsing RC, Swatloski RP et al (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    Article  CAS  Google Scholar 

  43. Sun N, Rahman M, Qin Y et al (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    Article  CAS  Google Scholar 

  44. Sun N, Jiang XY, Maxim ML et al (2011) Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem 4:65–73

    Article  CAS  Google Scholar 

  45. Li B, Asikkala J, Filpponen I et al (2010) Factors affecting wood dissolution and regeneration of ionic liquids. Ind Eng Chem Res 49:2477–2484

    Article  CAS  Google Scholar 

  46. Cao Y, Wu J, Zhang J et al (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21

    Article  CAS  Google Scholar 

  47. Ren JL, Sun RC, Liu CF et al (2007) Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydr Polym 70:406–414

    Article  CAS  Google Scholar 

  48. Edgar KJ, Buchanan CM, Debenham JS et al (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  49. Fink HP, Weigel P, Purz HJ et al (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  50. McCormick CL, Dawsey TR (1990) Preparation of cellulose derivatives via ring-opening reactions with cyclic reagents in lithium chloride/N,N-dimethylacetamide. Macromolecules 23:3606–3610

    Article  CAS  Google Scholar 

  51. Fischer S, Voigt W, Fischer K (1999) The behaviour of cellulose in hydrated melts of the composition LiX·nH2O (X = I−, NO3 −, CH3COO−, ClO4 −). Cellulose 6:213–219

    Article  CAS  Google Scholar 

  52. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  53. Wang ZG, Yokoyama T, Chang HM et al (2009) Dissolution of beech and spruce milled woods in LiCl/DMSO. J Agr Food Chem 57:6167–6170

    Article  CAS  Google Scholar 

  54. Luo HM, Li YQ, Zhou CR (2005) Study on the dissolubility of the cellulose in the functionalized ionic liquid. Polym Mater Sci Eng 21:233–235 (in Chinese)

    CAS  Google Scholar 

  55. Handy ST (2003) Greener solvents: room temperature ionic liquids from biorenewable sources. Chem-A Eur J 9:2938–2944

    Article  CAS  Google Scholar 

  56. Zhao H, Baker GA, Song ZY et al (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705

    Article  CAS  Google Scholar 

  57. Zhao H, Jones CL, Cowins JV (2009) Lipase dissolution and stabilization in ether-functionalized ionic liquids. Green Chem 11:1128–1138

    Article  CAS  Google Scholar 

  58. Striegel AM (2003) Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl. J Chil Chem Soc 48:73–77

    Article  CAS  Google Scholar 

  59. Dupont AL (2003) Cellulose in lithium chloride/N, N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44:4117–4126

    Article  CAS  Google Scholar 

  60. Remsing RC, Swatloski RP, Rogers RD et al (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: A13C and35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273

    Article  Google Scholar 

  61. Remsing RC, Hernandez G, Swatloski RP et al (2008) Solvation of carbohydrates in N, N′-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy study. J Phys Chem B 112:11071–11078

    Article  CAS  Google Scholar 

  62. Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  63. Zakzeski J, Bruijnincx PCA, Jongerius AL et al (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  64. Metzger JO, Bicke C, Faix O et al (1992) Matrix-assisted laser desorption mass-spectrometry of lignins. Angew Chem-Int Ed Eng 31:762–764

    Article  Google Scholar 

  65. Brauns FE (1939) Native lignin. I. Its isolation and methylation. J Am Chem Soc 61:2120–2127

    Article  CAS  Google Scholar 

  66. Lu FC, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35:535–544

    Article  CAS  Google Scholar 

  67. Ikeda T, Holtman K, Kadla JF et al (2002) Studies on the effect of ball milling on lignin structure using a modified DFRC method. J Agric Food Chem 50:129–135

    Article  CAS  Google Scholar 

  68. Tan SSY, MacFarlane DR, Upfal J et al (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345

    Article  CAS  Google Scholar 

  69. Rahman M, Sun N, Qin Y, et al (2010) Ionic liquid systems for the processing of biomass, their components and/or derivatives, and mixtures thereof. PCT Int. Appl. WO 2010056790 A1, 5/20/2010

    Google Scholar 

  70. Lee SH, Lee SB (2005) The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem Commun 5:3469–3471

    Article  Google Scholar 

  71. Swiderski K, McLean A, Gordon CM et al (2004) Estimates of internal energies of vaporisation of some room temperature ionic liquids. Chem Commun 4:2178–2179

    Article  Google Scholar 

  72. Thielemans W, Wool RP (2005) Lignin esters for use in unsaturated thermosets: Lignin modification and solubility modeling. Biomacromolecules 6:1895–1905

    Article  CAS  Google Scholar 

  73. Sun RC, Tomkinson J, Ma PL et al (2000) Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohy Polym 42:111–122

    Article  CAS  Google Scholar 

  74. Ebringerova A, Hromadkova Z, Kacurakova M et al (1994) Quaternized xylans-synthesis and structural characterization. Carbohy Polym 24:301–308

    Article  CAS  Google Scholar 

  75. Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125:12998–12999

    Article  CAS  Google Scholar 

  76. Armstrong DW, He LF, Liu YS (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71:3873–3876

    Article  CAS  Google Scholar 

  77. Liu QB, Janssen MHA, van Rantwijk F et al (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39–42

    Article  CAS  Google Scholar 

  78. Poirier M, Charlet G (2002) Chitin fractionation and characterization in N, N-dimethylacetamide/lithium chloride solvent system. Carbohy Polym 50:363–370

    Article  CAS  Google Scholar 

  79. Jayakumar R, Egawa T, Furuike T et al (2009) Synthesis, characterization, and thermal properties of phosphorylated chitin for biomedical applications. Polym Eng Sci 49:844–849

    Article  CAS  Google Scholar 

  80. Chen LY, Du YM, Wu HQ et al (2002) Relationship between molecular structure and moisture-retention ability of carboxymethyl chitin and chitosan. J Appl Polym Sci 83:1233–1241

    Article  CAS  Google Scholar 

  81. Daraghmeh N, Rashid I, Al Omari MMH et al (2010) Preparation and characterization of a novel co-processed excipient of chitin and crystalline mannitol. AAPS Pharm Sci Tech 11:1558–1571

    Article  CAS  Google Scholar 

  82. Suzuki D, Takahashi M, Abe M et al (2008) Comparison of various mixtures of β-chitin and chitosan as a scaffold for three-dimensional culture of rabbit chondrocytes. J Mater Sci Mater Med 19:1307–1315

    Article  CAS  Google Scholar 

  83. Atkins EDT (1985) Conformations in polysaccharides and complex carbohydrates. J Biosci 8:375–387

    Article  CAS  Google Scholar 

  84. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  85. Mine S, Izawa H, Kaneko Y et al (2009) Acetylation of α-chitin in ionic liquids. Carbohy Res 344:2263–2265

    Article  CAS  Google Scholar 

  86. Einbu A, Naess SN, Elgsaeter A et al (2004) Solution properties of chitin in alkali. Biomacromolecules 5:2048–2054

    Article  CAS  Google Scholar 

  87. Wang WT, Zhu J, Wang XL et al (2010) Dissolution behavior of chitin in ionic liquids. J Macromol Sci Part B Phys 49:528–541

    Article  CAS  Google Scholar 

  88. Agboh OC, Qin Y (1997) Chitin and chitosan fibers. Polym Adv Technol 8:355–365

    Article  CAS  Google Scholar 

  89. Yamada H, Nakao H, Takasu Y et al (2001) Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mater Sci Eng C 14:41–46

    Article  Google Scholar 

  90. Gupta MK, Khokhar SK, Phillips DM et al (2007) Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. Langmuir 23:1315–1319

    Article  CAS  Google Scholar 

  91. Servoli E, Maniglio D, Motta A et al (2005) Surface properties of silk fibroin films and their interaction with fibroblasts. Macromol Biosci 5:1175–1183

    Article  CAS  Google Scholar 

  92. Xu Y, Zhang YP, Shao HL et al (2005) Solubility and rheological behavior of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Int J Biol Macromol 35:155–161

    Article  CAS  Google Scholar 

  93. Aoki N, Furuhata KI, Sakamoto M (1994) Cationic graft-copolymerization of tetrahydrofuran onto bromodeoxycellulose. J Appl Polym Sci 51:721–730

    Article  CAS  Google Scholar 

  94. Phillips DM, Drummy LF, Naik RR et al (2005) Regenerated silk fiber wet spinning from an ionic liquid solution. J Mater Chem 15:4206–4208

    Article  CAS  Google Scholar 

  95. Hameed N, Guo QP (2009) Natural wool/cellulose acetate blends regenerated from the ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohy Polym 78:999–1004

    Article  CAS  Google Scholar 

  96. Hameed N, Guo QP (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803–813

    Article  CAS  Google Scholar 

  97. Yuan JG, Wang Q, Fan XR (2010) Dyeing behaviors of ionic liquid treated wool. J Appl Polym Sci 117:2278–2283

    Article  CAS  Google Scholar 

  98. Xu Q, Kennedy JF, Liu L (2008) An ionic liquid as reaction media in the ring opening graft polymerization of ɛ-caprolactone onto starch granules. Carbohyd Polym 72:113–121

    Article  CAS  Google Scholar 

  99. Biswas A, Shogren RL, Stevenson DG et al (2006) Ionic liquids as solvents for biopolymers: acylation of starch and zein protein. Carbohyd Polym 66:546–550

    Article  CAS  Google Scholar 

  100. Kimizuka N, Nakashima T (2001) Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels. Langmuir 17:6759–6761

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin D. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, H., Gurau, G., Rogers, R.D. (2014). Dissolution of Biomass Using Ionic Liquids. In: Zhang, S., Wang, J., Lu, X., Zhou, Q. (eds) Structures and Interactions of Ionic Liquids. Structure and Bonding, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38619-0_3

Download citation

Publish with us

Policies and ethics