The Carbon Balance of Tropical Mountain Forests Along an Altitudinal Transect

  • Christoph Leuschner
  • Alexandra Zach
  • Gerald Moser
  • Jürgen Homeier
  • Sophie Graefe
  • Dietrich Hertel
  • Bärbel Wittich
  • Nathalie Soethe
  • Susanne Iost
  • Marina Röderstein
  • Viviana Horna
  • Katrin Wolf
Part of the Ecological Studies book series (ECOLSTUD, volume 221)


Not much is known about the role of tropical mountain forests in the global carbon cycle. This chapter summarises a decade of research on C pools and C fluxes in Andean mountain forests of the San Francisco region along an elevation transect from 1,000 m to 3,000 m a.s.l. based on measurements in 5 (3) intensively studied stands at five elevations and supplementary data collected in additional 54 forest plots at three elevations covering different topographic positions at these altitudes. With ecosystem C pools in the range of 320–370 Mg C ha−1, these forests store equally large, or even larger, amounts of C than neotropical lowland forests, despite the decrease in aboveground biomass with elevation. Gross and net primary production (NPP) and net ecosystem production all decrease largely with elevation while fine root production seems to increase. Our results show that tropical mountain forests are playing an important, yet underestimated, role as C stores.


Soil Organic Carbon Fine Root Gross Primary Production Root Respiration Mean Annual Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Batjes NH (2008) Mapping soil carbon stocks of Central Africa using SOTER. Geoderma 146:58–65CrossRefGoogle Scholar
  2. Batjes NH, Dijkshoorn JA (1999) Carbon and nitrogen stocks in the soil of the Amazon region. Geoderma 89:273–286CrossRefGoogle Scholar
  3. Bendix J, Rollenbeck R, Fabian P, Emck P (2008) Climate. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer Verlag, Berlin, pp 63–74CrossRefGoogle Scholar
  4. Benner J, Vitousek PM, Ostertag R (2010) Nutrient cycling and nutrient limitation in tropical montane cloud forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 90–100Google Scholar
  5. Bruijnzeel LA, Kappelle M, Mulligan M, Scatena FN (2010) Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 691–740Google Scholar
  6. Cavaleri MA, Oberbauer SF, Ryan MG (2006) Wood CO2 efflux in a primary tropical rain forest. Glob Change Biol 12:2442–2458CrossRefGoogle Scholar
  7. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99PubMedCrossRefGoogle Scholar
  8. Chen G-S, Yang Y-S, Xie J-S, Guo J-F, Gao R, Qian W (2005) Conversion of a natural broad leafed evergreen forest into pure plantation forests in a subtropical area: effects on carbon storage. Ann For Sci 62:659–668CrossRefGoogle Scholar
  9. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370CrossRefGoogle Scholar
  10. Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–947PubMedCrossRefGoogle Scholar
  11. Davidson EA, de Araujo AC, Artaxo P, Balch JK, Brown IFC, Bustamante MM, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328PubMedCrossRefGoogle Scholar
  12. De Moraes JF, Cerri CC, Melillo JM, Kicklighter D, Neill C, Skole DL, Steudler PA (1995) Soil carbon stocks of the Brazilian Amazon Basin. Soil Sci Soc Am J 59:244–247CrossRefGoogle Scholar
  13. Emck P (2007) A climatology of South Ecuador with special focus on the major Andean ridge as Atlantic-Pacific climate divide. PhD Thesis, University Erlangen, GermanyGoogle Scholar
  14. Evans JR, Terashima I, Hanba Y, Loreto F (2004) Chloroplast to leaf. In: Smith WK, Vogelmann TC, Critchley C (eds) Photosynthetic adaptation. Chloroplast to landscape. Ecological studies 178. Springer, New York, pp 107–132Google Scholar
  15. Gentry AH (2001) Patrones de diversidad y composicion floristica en los bosques de las montanas neotropicales. In: Kappelle M, Brown AD (eds) Bosques nublados del neotropico. Editorial INBio, Santo Domingo de Heredia, Costa Rica, pp 85–123Google Scholar
  16. Gibbon A, Silman M, Malhi Y, Fisher J, Meir P, Zimmermann M, Dargie G, Farfan W, Garcia K (2010) Ecosystem carbon storage across the grassland–forest transition in the high Andes of Manu National Park, Peru. Ecosystems 13:1097–1111CrossRefGoogle Scholar
  17. Girardin CAJ, Malhi Y, Aragao LEOC, Mamani M, Huasco WH, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ (2010) Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Change Biol 16:3176–3192CrossRefGoogle Scholar
  18. Grace J, Meir P (2009) Tropical rain forests as old-growth forests. In: Wirth C, Gleixner G, Heimann M (eds) Old-growth forests. Function, fate and value. Ecological studies, vol 207. Springer, Berlin, pp 391–408Google Scholar
  19. Grace J, Lloyd J, McIntyre J, Miranda A, Meir P, Miranda H, Moncrieff J, Massheder J, Wright I, Gash J (1995) Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. Glob Change Biol 1:1–12CrossRefGoogle Scholar
  20. Graefe S, Hertel D, Leuschner C (2008a) Estimating fine root turnover in tropical forests along an elevational transect using minirhizotrons. Biotropica 40:536–542CrossRefGoogle Scholar
  21. Graefe S, Hertel D, Leuschner C (2008b) Fine root dynamics along a 2000-m elevation transect in South Ecuadorian mountain forests. Plant Soil 313:155–166CrossRefGoogle Scholar
  22. Hertel D, Leuschner C (2002) A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus-Quercus mixed forest. Plant Soil 239:237–251CrossRefGoogle Scholar
  23. Hertel D, Leuschner C (2010) Fine root mass and fine root production in tropical moist forests as dependent on soil, climate, and elevation. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 428–443Google Scholar
  24. Homeier J, Werner FA, Gradstein SR, Breckle S-W, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 87–100Google Scholar
  25. Iost S (2007) Soil respiration, microbial respiration and mineralisation in soils of montane rainforests of southern Ecuador: influence of altitude. PhD Thesis, Technical University of Dresden, Germany. 171 pp. Available at
  26. Kitayama K, Aiba S-I (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51CrossRefGoogle Scholar
  27. Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230CrossRefGoogle Scholar
  28. Litherland M, Aspden J, Jemielita R (1994) The metamorphic belts of Ecuador. No. 11 in Overseas Memoir of the British Geological Survey. British Geology Survey, KeyworthGoogle Scholar
  29. Lü X-T, Tang J-W, Feng Z-L, Li M-H (2009) Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China. Rev Biol Trop 57(1–2):211–222PubMedGoogle Scholar
  30. Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhoffer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grunwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolar P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537CrossRefGoogle Scholar
  31. Malhi Y (2010) The carbon balance of tropical forest regions, 1990–2005. Curr Opin Environ Sustain 2:237–244CrossRefGoogle Scholar
  32. Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75CrossRefGoogle Scholar
  33. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740CrossRefGoogle Scholar
  34. Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Nunez VP, Patino S, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Torres LA, Vasquez MR, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591CrossRefGoogle Scholar
  35. Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Terborgh J, Martinez RV, Vinceti B (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol 12:1107–1138CrossRefGoogle Scholar
  36. Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S (2010) Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob Change Biol 16:3171–3175CrossRefGoogle Scholar
  37. McJannet DL, Wallace JS, Reddell P (2010) Comparative water budgets of a lower and an upper montane cloud forest in the Wet Tropics of northern Australia. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 479–490Google Scholar
  38. Mercado L, Lloyd J, Carswell F, Malhi Y, Meir P, Nobre AD (2006) Modelling Amazonian forest eddy covariance data: a comparison of big leaf versus sun/shade models for the C-14 tower at Manaus. I. Canopy photosynthesis. Acta Amazon 36:69–82CrossRefGoogle Scholar
  39. Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root:shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96CrossRefGoogle Scholar
  40. Moser G, Hertel D, Leuschner C (2007) Altitudinal change of leaf area and leaf mass in tropical mountain forests – a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:24–935CrossRefGoogle Scholar
  41. Moser G, Röderstein M, Soethe N, Hertel D, Leuschner C (2008) Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 229–242Google Scholar
  42. Moser G, Leuschner C, Röderstein M, Graefe S, Soethe N, Hertel D (2010) Biomass and productivity of fine and coarse roots in five tropical mountain forests stands along an altitudinal transect in southern Ecuador. Plant Ecol Divers 3:151–164CrossRefGoogle Scholar
  43. Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Change Biol 17:2211–2226CrossRefGoogle Scholar
  44. Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM (2006) Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87PubMedCrossRefGoogle Scholar
  45. Robertson AL, Malhi Y, Farfan-Amezquita F, Aragao LEOC, Espejo JES, Robertson MA (2010) Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Glob Change Biol 16:3193–3204CrossRefGoogle Scholar
  46. Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz HL, Cropper WP, Running SW (1995) Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia 101:133–140CrossRefGoogle Scholar
  47. Schnitzer SA, DeWalt SJ, Chave J (2006) Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38(5):581–591CrossRefGoogle Scholar
  48. Sierra CA, del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For Ecol Manage 243:299–306CrossRefGoogle Scholar
  49. Slik JWF, Aiba S-I, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G, Poulsen AD, Raes N, Sheil D, Sidiyasa K, Suzuki E, van Valkenburg JLCH (2010) Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob Ecol Biogeogr 19:50–60CrossRefGoogle Scholar
  50. Soethe N, Lehmann J, Engels C (2007) Carbon and nutrient stocks in roots of forests at different altitudes in the Ecuadorian Andes. J Trop Ecol 23:319–328CrossRefGoogle Scholar
  51. Strauss-Debenedetti S, Bazzaz F (1996) Photosynthetic characteristics of tropical trees along successional gradients. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapmann & Hall, New York, pp 162–186CrossRefGoogle Scholar
  52. Townsend AR, Cleveland CC, Cory C et al (2011) Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9:9–17CrossRefGoogle Scholar
  53. Unger M, Homeier J, Leuschner C (2013) Relationships among leaf area index, below-canopy light availability and tree diversity along a transect from tropical lowland to montane forests in NE Ecuador. Trop Ecol 54(1):33–45Google Scholar
  54. Veneklaas EJ, Poorter L (1998) Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. In: Lambers H, Poorter H, van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden, pp 337–361Google Scholar
  55. Vieira SA, Alves LF, Duarte-Neto PJ, Martins SC, Veiga LG, Scaranello MA, Picollo M, Camargo PB, do Carmo JB, Sousa Neto E, Santos FAM, Joly CA, Martinelli LA (2011) Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecol Evol 1:421–434PubMedCrossRefGoogle Scholar
  56. Werner FA, Homeier J, Oesker M, Boy J (2012) Epiphytic biomass of a tropical Andean forest varies with topography. J Trop Ecol 28:23–31CrossRefGoogle Scholar
  57. Wilcke W, Hess T, Bengel C, Homeier J, Valarezo C, Zech W (2005) Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. For Ecol Manage 205:139–147CrossRefGoogle Scholar
  58. Wittich B, Horna V, Homeier J, Leuschner C (2012) Altitudinal change in the photosynthetic capacity of tropical trees: a case study from Ecuador and a pantropical literature analysis. Ecosystems 15:958–973CrossRefGoogle Scholar
  59. Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochem Cycles 25, GB4009Google Scholar
  60. Yonekura Y, Ohta S, Kiyono Y, Ahsa D, Morisada K, Tanaka N, Kanzaki M (2010) Changes in soil carbon stocks after deforestation and subsequent establishment of “Imperata” grassland in the Asian humid tropics. Plant Soil 329:495–507CrossRefGoogle Scholar
  61. Zach A (2008) Carbon release from woody parts of trees along an elevation gradient in a tropical montane moist forest of southern Ecuador. PhD Thesis, University of Göttingen, Germany. 135 pp. Available at
  62. Zach A, Horna V, Leuschner C (2008) Elevational change in woody tissue CO2 efflux in a tropical mountain rain forest in southern Ecuador. Tree Physiol 28:67–74PubMedCrossRefGoogle Scholar
  63. Zach A, Horna V, Leuschner C (2010) Patterns of wood carbon dioxide efflux across a 2000-m elevation transect in an Andean moist forest. Oecologia 162:127–137PubMedCrossRefGoogle Scholar
  64. Zimmermann M, Meir P, Silman MR, Fedders A, Gibbon A, Malhi Y, Urrego DH, Bush MB, Feeley KJ, Garcia KC, Dargie GC, Farfan WR, Goetz BP, Johnson WT, Kline KM, Modi AT, Rurau NMQ, Staudt BT, Zamora F (2010) No differences in soil carbon stocks across the tree line in the Peruvian Andes. Ecosystems 13:62–74CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christoph Leuschner
    • 1
  • Alexandra Zach
    • 1
  • Gerald Moser
    • 1
    • 2
  • Jürgen Homeier
    • 1
  • Sophie Graefe
    • 1
    • 3
  • Dietrich Hertel
    • 1
  • Bärbel Wittich
    • 1
  • Nathalie Soethe
    • 4
  • Susanne Iost
    • 5
  • Marina Röderstein
    • 1
  • Viviana Horna
    • 1
  • Katrin Wolf
    • 6
  1. 1.Plant Ecology, Albrecht von Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
  2. 2.Plant EcologyUniversity of GießenGießenGermany
  3. 3.Tropical Silviculture, Burckhardt InstituteUniversity of GöttingenGöttingenGermany
  4. 4.Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
  5. 5.Institute for World Forestry, Johann Heinrich von Thünen-Institut (vTI)Federal Research Institute for Rural Areas, Forestry and Fisheries, HamburgHamburgGermany
  6. 6.Soil Science and Forest Nutrition, Büsgen InstituteUniversity of GöttingenGöttingenGermany

Personalised recommendations