Skip to main content

Theoretical Studies on Hydroxamic Acids

  • Chapter
  • First Online:
Hydroxamic Acids

Abstract

Hydroxamic acids find many applications in chemistry and biology and have been the subject of many experimental investigations. Theoretical studies are not as frequent. However, the smallest homolog, formohydroxamic acid (FHA), has been studied at various levels, including high-level ab initio and density functional with large basis sets. All studies indicate that it exists as the Z-amide tautomer and deprotonation occurs from the nitrogen. Many combined experimental and theoretical studies confirm these conclusions. The interaction of formohydroxamic acid with solvent molecules and its adducts with various compounds have also been theoretically investigated. The higher homologs have not been studied as much. Acetohydroxamic acid, also known as Lithostat, has also been investigated at various levels of theory and experiment. Interest in this compound arises from the fact that it is a known inhibitor of urease. Other investigated hydroxamic acids include benzohydroxamic acid, whose conformational properties have also been investigated. Because of their association with inhibition of the urease enzyme and matrix metalloproteinases, as well as their application as siderophores, the complexation chemistry of hydroxamic acids is very important. However, very few theoretical studies aimed at deciphering the complexation of hydroxamic acids have appeared in the literature. Studies on metal ion selectivity of hydroxamic acids reveal that the affinity toward Ni(II), the metal ion present in urease, is due to its electrophilic nature. However, several QSAR and docking studies have appeared in the literature relating to applications of hydroxamic acids as inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHA:

Acetohydroxamic acid

AIMD:

Ab initio molecular dynamics

BHA:

Benzohydroxamic acid

BPU:

Bacillus pasteurii

DFT:

Density functional theory

FHA:

Formohydroxamic acid

GGA:

Generalized gradient approximation

HDAC:

Histone deacetylase

HOMO:

Highest occupied molecular orbital

HP:

Helicobacter pylori

HSAB:

Hard and soft (Lewis) acids and bases

IW:

Irving-Williams

KAU:

Klebsiella aerogenes

KCX:

Lysine NZ-carboxylic acid

LDA:

Local density approximation

LUMO:

Lowest unoccupied molecular orbital

MD:

Molecular dynamics

MMP:

Matrix metalloproteinase

NBPT:

N-(n-Butyl) thiophosphoric triamide

OXHA:

Oxalodihydroxamic acid

PBE:

Perdew-Burke-Ernzerhof

PDF:

Peptide deformylase

QSAR:

Quantitative structure activity relationships

SHA:

Salicylhydroxamic acid

References

  • Agrawal YK, Patel SA (1980) Hydroxamic acids: reagents for the solvent extraction and spectrophotometric determination of metals. Rev Anal Chem 4:237–238

    Article  CAS  Google Scholar 

  • Agrawal YK, Roshania RD (1980) Non-aqueous titrimetric determination of N-p-chlorophenylbenzohydroxamic acids: visual and potentiometric titration in dimethylformamide. Bull Soc Chim Belg 89:175–179

    Article  CAS  Google Scholar 

  • Al-Saadi AA (2012) Conformational analysis and vibrational assignments of benzohydroxamic acid and benzohydrazide. J Mol Struct 1023:115–122

    Article  CAS  Google Scholar 

  • Bagno A, Comuzzi C, Scorrano G (1994) Site of ionization of hydroxamic acids probed by heteronuclear NMR relaxation rate and NOE measurements. An experimental and theoretical study. J Am Chem Soc 116:916–924

    Article  CAS  Google Scholar 

  • Barocas A, Baroncelli F, Biondi GB, Grossi G (1966) The complexing power of hydroxamic acids and its effects on behaviour of organic extractants in the reprocessing of irradiated fuels II. J Inorg Nucl Chem 28:2961–2967

    Article  CAS  Google Scholar 

  • Baroncelli F, Grossi G (1965) The complexing power of hydroxamic acids and its effects on behaviour oforganic extractants in the reprocessing of irradiated fuels I. J Inorg Nucl Chem 27:1085–1092

    Article  CAS  Google Scholar 

  • Barrios AM, Lippard SJ (2000) Interaction of urea with a hydroxide-bridged dinuclear nickel center: an alternative model for the mechanism of urease. J Am Chem Soc 122:9172–9177

    Article  CAS  Google Scholar 

  • Bauer L, Exner O (1974) The chemistry of hydroxamic acids and N-hydroxyimides. Angew Chem Int Ed Engl 13:376–384

    Article  Google Scholar 

  • Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Struct Fold Des 7:205–216

    Article  CAS  Google Scholar 

  • Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (2000) The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 Å resolution. J Biol Inorg Chem 5:110–118

    Article  CAS  Google Scholar 

  • Bertini I, Briganti F, Scozzafava A (1995) In: Berthon G (ed) Handbook of metal–ligand interactions in biological fluids. Marcell-Dekker, New York, pp 81–91

    Google Scholar 

  • Blakeley RL, Treston A, Andrews RK, Zerner B (1982) Nickel(II) promoted ethanolysis and hydrolysis N-(2-pyridylmethyl)urea. A model for urease. J Am Chem Soc 104:612–614

    Article  CAS  Google Scholar 

  • Blom CE, Günthard HH (1981) Rotational isomerism in methyl formate and methyl acetate; a low-temperature matrix infrared study using thermal molecular beams. Chem Phys Lett 84:267–271

    Article  CAS  Google Scholar 

  • Bordwell FG, Fried HE, Hughes DL, Lynch T-Y, Satish AV, Whang YE (1990) Acidities of carboxamides, hydroxamic acids, carbohydrazides, benzenesulfonamides, and benzenesulfonohydrazides in DMSO solution. J Org Chem 55:3330–3336

    Article  CAS  Google Scholar 

  • Bracher BH, Small RWH (1970) The crystal structure of acetohydroxamic acid hemihydrate. Acta Crystallogr B 26:1705–1709

    Article  CAS  Google Scholar 

  • Brown DA, Roche AL, Pakkanen TA, Pakkanen TT, Smolander K (1982) The X-ray crystal structure of bis(glycinohydroxamato)nickel(II). A novel co-ordination of nickel by a hydroxamic acid via the nitrogen atom of the NHOH group. J Chem Soc, Chem Commun 676–677

    Google Scholar 

  • Brown DA, Glass WK, Mageswaran R, Ali Mohammed S (1991) 1H and 13C NMR studies of isomerism in hydroxamic acids. Magn Res Chem 29:40–45

    Google Scholar 

  • Brown DA, Coogan RA, Fitzpatrick NJ, Glass WK, Abukshima DE, Shiels L, Ahlgrén M, Smolander K, Pakkanen TT, Pakkanen TA, Peräkylä M (1996) Conformational behaviour of hydroxamic acids: ab initio and structural studies. J Chem Soc, Perkin Trans 2:2673–2679

    Google Scholar 

  • Brown DA, Cuffe L, Fitzpatrick NJ, Glass WK, Herlihy K (1998) COST D8 & ESF workshop on biological and medicinal aspects of metal speciation, JATE, Szeged, Hungary, 23–25 Aug 1998

    Google Scholar 

  • Brown DA, Errington W, Glass WK, Haase W, Kemp TJ, Nimir H, Ostrovsky SM, Werner R (2001) Magnetic, spectroscopic, and structural studies of dicobalt hydroxamates and model hydrolases. Inorg Chem 40:5962–5971

    Article  CAS  Google Scholar 

  • Chittari P, Jadhav VR, Ganesh KN, Rajappa S (1998) Synthesis and metal complexation of chiral 3-mono-2-hydroxypyrrlopyrazine-1,4-diones or 3,3,-bis-allyl-2-hydroxy-pyrollopyrazine-1,4-diones. J Chem Soc, Perkin Trans I 1319–1324

    Google Scholar 

  • Ciurli S, Benini S, Rypniewski WR, Wilson KS, Miletti S, Mangani S (1999) Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coord Chem Rev 190:331–355

    Article  Google Scholar 

  • Codd R (2008) Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coord Chem Rev 252:1387–1408

    Article  CAS  Google Scholar 

  • Colston BJ, Choppin GR, Taylor RJ (2000) A preliminary study of the reduction of Np(VI) by formohydroxamic acid using stopped-flow near-infrared spectrophotometry. Radiochim Acta 88:329–334

    Article  CAS  Google Scholar 

  • Dallavalle S, Cincinelli R, Nannei R, Merlini L, Morini G, Penco S, Pisano C, Vesci L, Barbarino M, Zuco V, Cesare MD, Zunino F (2009) Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur J Med Chem 44:1900–1912

    Article  CAS  Google Scholar 

  • Decouzon M, Exner O, Gal J-F, Maria P-C (1990) The gas-phase acidity and the acidic site of acetohydroxamic acid: an FT-ICR study. J Org Chem 55:3980–3981

    Article  CAS  Google Scholar 

  • Denis P, Ventura ON (2001) Hydroxamic chelates of boric acid, a density functional study. J Mol Struct (Theochem) 537:173–180

    Article  CAS  Google Scholar 

  • Desaraju P, Winston A (1986) Synthesis and iron complexation studies of bis-hydroxamic acids. J Coord Chem 14:241–248

    Article  CAS  Google Scholar 

  • Dessi A, Micera G, Sanna D, Erre LS (1992) Vanadium(IV) and oxovanadium(IV) complexes of hydroxamic acids and related ligands. J Inorg Biochem 48:279–287

    Article  CAS  Google Scholar 

  • Dissanayake DP, Senthilnithy R (2009) Thermodynamic cycle for the calculation of ab initio pK a values for hydroxamic acids. J Mol Struct (Theochem) 910:93–98

    Article  CAS  Google Scholar 

  • Dixon NE, Gazzola C, Watters JJ, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J Am Chem Soc 97:4131–4133

    Article  CAS  Google Scholar 

  • Domagal-Goldman SD, Paul KW, Sparks DL, Kubicki JD (2009) Quantum chemical study of the Fe(III)-desferrioxamine B siderophore complex—electronic structure, vibrational frequencies, and equilibrium Fe-isotope fractionation. Geochim Cosmochim Acta 73:1–12

    Article  CAS  Google Scholar 

  • Duarte HA, Paniago EB, Carvalho S, De Almeida WB (1998) Interaction of N-hydroxyacetamide with vanadate: a density functional study. J Inorg Biochem 72:71–77

    Article  CAS  Google Scholar 

  • Edwards DC, Nielson SB, Jarzęcki AA, Spiro TG, Mynen SCB (2005) Experimental and theoretical vibrational spectroscopy studies of acetohydroxamic acid and desferrioxamine B in aqueous solution: effects of pH and iron complexation. Geochim Cosmochim Acta 69:3237–3248

    Article  CAS  Google Scholar 

  • Exner O (1964) Acyl derivatives of hydroxylamine. IX. A spectroscopic study of tautomerism of sulfohydroxamic acids. Collect Czech Chem Commun 29:1337–1343

    Article  CAS  Google Scholar 

  • Farkas E, Kozma E, Pethö M, Herlihy KM, Micera G (1998a) Equilibrium studies on copper(II)- and iron(III)-monohydroxamates. Polyhedron 17:3331–3342

    Article  CAS  Google Scholar 

  • Farkas E, Megyeri K, Somsák L, Kováks L (1998b) Interaction between Mo(VI) and siderophore models in aqueous solution. J Inorg Biochem 70:41–47

    Article  CAS  Google Scholar 

  • Farkas E, Enyedy ÉA, Micera G, Garribba E (2000) Coordination modes of hydroxamic acids in copper(II), nickel(II) and zinc(II) mixed-ligand complexes in aqueous solution. Polyhedron 19:1727–1736

    Article  CAS  Google Scholar 

  • Fishbein WN, Carbone PP (1965) Urease catalysis: II. Inhibition of the enzyme by hydroxyurea, hydroxylamine, and acetohydroxamic acid. J Biol Chem 240:2407–2414

    CAS  Google Scholar 

  • Fitzpatrick NJ, Mageswaran R (1989) Theoretical study of hydroxamic acids. Polyhedron 8:2255–2263

    Article  CAS  Google Scholar 

  • García B, Ibeas S, Leal JM, Senent ML, Niño A, Muñoz-Caro C (2000) Theoretical and experimental study of the acetohydroxamic acid protonation: the solvent effect. Chem Eur J 6:2644–2652

    Article  Google Scholar 

  • García B, Ibeas S, Muñoz A, Leal JM, Ghinami C, Secco F, Venturini M (2003) NMR studies of phenylbenzohydroxamic acid and kinetics of complex formation with Nickel(II). Inorg Chem 42:5434–5441

    Article  CAS  Google Scholar 

  • García B, Ibeas S, Leal JM, Secco F, Venturini M, Senent ML, Niño A, Muñoz C (2005) Conformations, protonation sites, and metal complexation of benzohydroxamic acid. A theoretical and experimental study. Inorg Chem 44:2908–2919

    Article  CAS  Google Scholar 

  • García B, Secco F, Ibeas S, Muñoz A, Hoyuelos FJ, Leal JM, Senent ML, Venturini M (2007) Structural NMR and ab initio study of salicylhydroxamic and p-hydroxybenzohydroxamic acids: evidence for an extended aggregation. J Org Chem 72:7832–7840

    Article  CAS  Google Scholar 

  • Gaynor D, Starikova ZA, Haase W, Nolan KB (2001) Copper(II) complexes of isomeric aminophenylhydroxamic acids. A novel ‘clam-like’ dimeric metallacrown and polymeric helical structure containing interlinked unique copper(II) sites. J Chem Soc, Dalton Trans 1578–1581

    Google Scholar 

  • Gece G, Bilgiç S (2010) A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corros Sci 52:3304–3308

    Article  CAS  Google Scholar 

  • Ghosh KK (1997) Kinetic and mechanistic aspects of acid catalysed hydrolysis of hydroxamic acids. Indian J Chem 36B:1089–1102

    CAS  Google Scholar 

  • Guo J-X, Ho J-J (1999) Ab initio study of substitution effect and catalytic effect of intramolecular hydrogen transfer of N-substituted formamides. J Phys Chem A 103:6433–6441

    Article  CAS  Google Scholar 

  • Guo Y, Xiao J, Guo Z, Chu F, Cheng Y, Wu S (2005) Exploration of a binding mode of indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorg Med Chem 13:5424–5434

    Article  CAS  Google Scholar 

  • Ha N-C, Oh S-T, Sung JY, Cha KA, Lee MH, Oh B-H (2001) Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol 8:505–509

    Article  CAS  Google Scholar 

  • Hadjipavlou-Litina D, Pontiki E (2002) Quantitative–structure activity relationships on lipoxygenase inhibitors. IEJMD 1:134–141

    Google Scholar 

  • Hashimoto S, Nakamura Y (1995) Nuclease activity of a hydroxamic acid derivative in the presence of various metal ions. J Chem Soc, Chem Commun 1413–1414

    Google Scholar 

  • Hashimoto S, Nakamura Y (1996) Characterization of lanthanide-mediated DNA cleavage by intercalator-linked hydroxamic acids: comparison with transition systems. J Chem Soc, Perkin Trans 1 2623–2628

    Google Scholar 

  • Hashimoto S, Ito S, Nakamura Y (1966) Nucleic acids sys series, vol 35. Oxford University Press, New York

    Google Scholar 

  • Hashimoto S, Yamashita R, Nakamura Y (1992) DNA strand scissions by hydroxamic acids-copper(II) ion under aerobic conditions. Chem Lett 1639–1642

    Google Scholar 

  • Hashimoto S, Itai K, Takeuchi Y, Nakamura Y (1997) Synthesis of bisnetropsin-linked hydroxamic acids and their DNA cleavage study in the presence of transition or lanthanide metal ions. Heterocyclic Commun 3:307–315

    Article  CAS  Google Scholar 

  • Hashimoto S, Yamamoto K, Yamada T, Nakamura Y (1998) Synthesis of bis(N-methylpyrrole oligopeptide-linked hydroxamic acids) and effective DNA cleavage by their vanadyl complexes. Heterocycles 48:939–947

    Article  CAS  Google Scholar 

  • Hall MD, Failes TW, Hibbs DE, Hambley TW (2002) Investigation of palladium(II) and platinum(II) complexes with salicylhydroxamic acid—structural and quantum mechanical studies. Inorg Chem 41:1223–1228

    Article  CAS  Google Scholar 

  • Hiriart MV, Corcuera LJ, Andrade C, Crivelli I (1985) Copper(II) complexes of a hydroxamic acid from maize. Phytochemistry 24:919–1922

    Article  Google Scholar 

  • Hu X, Shelver WH (2003) Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction. J Mol Graph Model 22:115–126

    Article  CAS  Google Scholar 

  • Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) The crystal structure of urease from Klebsiella aerogenes. Science 268:998–1004

    Article  CAS  Google Scholar 

  • Jiang Y, Pan Y, Chen D, Wang F, Yan L, Li G, Xue Y (2012) A theoretical study of the effect of carboxyl hydroxamic acid on the flotation behaviour of diapore and aluminosilicate minerals. Clays Clay Miner 60:52–62

    Article  CAS  Google Scholar 

  • Joshi RR, Ganesh KN (1992) Chemical cleavage of plasmid DNA by Cu(II), Ni(II) and Co(III) desferal complexes. Biochem Biophys Res Commun 182:588–592

    Article  CAS  Google Scholar 

  • Joshi RR, Ganesh KN (1994a) Duplex and triplex directed DNA cleavage by oligonucleotide-Cu(II)/Co(II) metallodesferal conjugates. Biochim Biophys Acta 1201:454–460

    Article  Google Scholar 

  • Joshi RR, Ganesh KN (1994b) Metallodesferals as a new class of DNA cleavers: specificity, mechanism and targeting of DNA scission reactions. Proc-Indian Acad Sci, Chem Sci 106:1089–1108

    CAS  Google Scholar 

  • Joshi KA, Gejji SP (2005) Electronic structure and vibrational analysis of AHA…HX complexes. Chem Phys Lett 415:110–114

    Article  CAS  Google Scholar 

  • Kaczor A, Proniewicz LM (2004) The structural study of acetohydroxamic and oxalodihydroxamic acids in DMSO solution based on the DFT calculations of NMR spectra. J Mol Struct 704:189–196

    Article  CAS  Google Scholar 

  • Kaczor A, Proniewicz LM (2005) Molecular structure of 2-(hydroxyimino)propanohydroxamic acid in solid state and DMSO solution. Spectrochim Acta, Part A 62:1023–1031

    Article  CAS  Google Scholar 

  • Kahn O (2000) Chemistry and physics of supramolecular materials. Acc Chem Res 33:647–657

    Article  CAS  Google Scholar 

  • Kakkar R, Grover R, Chadha P (2003) Conformational behavior of some hydroxamic acids. Org Biomol Chem 1:2200–2206

    Article  CAS  Google Scholar 

  • Kakkar R, Grover R, Gahlot P (2006a) Density functional study of the properties of isomeric aminophenylhydroxamic acids and their Cu(II) complexes. Polyhedron 25:759–766

    Article  CAS  Google Scholar 

  • Kakkar R, Grover R, Gahlot P (2006b) Metal ion selectivity of hydroxamates: a density functional study. J Mol Struct (Theochem) 767:175–184

    Article  CAS  Google Scholar 

  • Kaur D, Kohli R (2008) Intra and intermolecular hydrogen bonding in formohydroxamic acid. Int J Quantum Chem 108:119–134

    Article  CAS  Google Scholar 

  • Kaur D, Kohli R (2012) Understanding hydrogen bonding of hydroxamic acids with some amino acid side chain model molecules. Struct Chem 23:161–173

    Article  CAS  Google Scholar 

  • Kaur D, Kohli R, Kaur RP (2009) The role of isomerism and medium effects on stability of anions of formo and thioformohydroxamic acid. J Mol Struct (Theochem) 911:30–39

    Article  CAS  Google Scholar 

  • Kehl H (ed) (1982) Chemistry and biology of hydroxamic acids. Karger, New York

    Google Scholar 

  • Koga T, Furutachi H, Nakamura T, Fukita N, Ohba M, Takahashi K, Okawa H (1998) Dinuclear nickel(II) complexes of phenol-based “end-off” compartmental ligands and their urea adducts relevant to the urease active site. Inorg Chem 37:989–996

    Article  CAS  Google Scholar 

  • Kumar D, Gupta SP (2003) A quantitative structure–activity relationship study on some matrix metalloproteinase and collagenase inhibitors. Bioorg Med Chem 11:421–426

    Article  CAS  Google Scholar 

  • Kurzak B, Kozlowski H, Farkas E (1992) Hydroxamic and amino hydroxamic acids and their complexes with metal ions. Coord Chem Rev 114:169–200

    Article  CAS  Google Scholar 

  • Larsen IK (1988) Structural characteristics of the hydroxamic acid group. Crystal structure of formohydroxamic acid. Acta Crystallogr B 44:527–533

    Article  Google Scholar 

  • Leung K (2006) Ab initio molecular dynamics study of the hydration of the formohydroxamate anion. Biophys Chem 124:222–228

    Article  CAS  Google Scholar 

  • Lindner HJ, Göttlicher S (1969) Die kristall- und molekülstruktur des eisen(III)-benzhydroxamat-trihydrates. Acta Crystallogr B 25:832–842

    Article  CAS  Google Scholar 

  • Lipczyñska-Kochany E, Iwamura H (1982) Oxygen-17 nuclear magnetic resonance studies. Pt. 10. Oxygen-17 nuclear magnetic resonance studies of the structures of benzohydroxamic acids and benzohydroxamate ions in solution. J Org Chem 47:5277–5282

    Article  Google Scholar 

  • Lippard SJ (1995) At last—the crystal structure of urease. Science 268:996–997

    Article  CAS  Google Scholar 

  • Lossen H (1869) Ueber die oxalohydroxamsäure. Justus Liebigs Ann Chem 150:314–320

    Article  Google Scholar 

  • Manunza B, Deiana S, Pintore M, Gessa C (1999) The binding mechanism of urea, hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study. Soil Biol Biochem 31:789–796

    Article  CAS  Google Scholar 

  • Marmion CJ, Murphy T, Nolan KB, Docherty JR (2000) Hydroxamic acids are nitric oxide donors. Facile formation of ruthenium(II)-nitrosyls and NO-mediated activation of guanylate cyclase by hydroxamic acids. Chem Commun 13:1153–1154

    Article  Google Scholar 

  • Marmion CJ, Griffith D, Nolan KB (2004) Hydroxamic acids—an intriguing family of bioligands and enzyme inhibitors. Eur J Inorg Chem 15:3003–3016

    Article  CAS  Google Scholar 

  • Martin RB (1987) A stability ruler for metal ion complexes. J Chem Educ 64:402

    Article  CAS  Google Scholar 

  • McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn (the “Gold Book”). Blackwell, Oxford

    Google Scholar 

  • Milios CJ, Manessi-Zoupa E, Perlepes SP (2002) Modeling the coordination mode of hydroxamate inhibitors in urease: preparation, X-ray crystal structure and spectroscopic characterization of the dinuclear complex [Ni2(O2CMe)(LH)2(tmen)2](O2CMe).0.9H2O.0.6EtOH (LH2 = benzohydroxamic acid; tmen = N,N,N′,N′-tetramethylethyleneamine). Trans Met Chem 27:864–873

    Google Scholar 

  • Miller MJ (1989) Synthesis and therapeutic potential of hydroxamic base siderophores and analogues. Chem Rev 89:1563–1579, and references therein

    Google Scholar 

  • Mora-Diez N, Senent ML, García B (2006) Ab initio study of solvent effects on the acetohydroxamic acid deprotonation processes. Chem Phys 324:350–358

    Article  CAS  Google Scholar 

  • Munoz-Caro C, Nino A, Senent ML, Leal JM, Ibeas S (2000) Modeling of protonation processes in acetohydroxamic acid. J Org Chem 65:405–410

    Article  CAS  Google Scholar 

  • Niño A, Muñoz-Caro C, Senent ML (2000) Suitability of different levels of theory for modelling of hydroxamic acids. J Mol Struct (Theochem) 530:291–300

    Article  Google Scholar 

  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  • Pearson MA, Park I-S, Schaller RA, Michel LO, Karplus PA, Hausinger RP (2000) Kinetic and structural characterization of urease active site variants. Biochemistry 39:8575–8584

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  • Ragno R, Simeoni S, Rotili D, Caroli A, Botta G, Brosch G, Massa S, Mai A (2008) Class II-selective histone deacetylase inhibitors. Part 2: alignment-independent GRIND 3-D QSAR, homology and docking studies. Eur J Med Chem 43:621–632

    Article  CAS  Google Scholar 

  • Raymond KN, Müller G, Matzanke BF (1984) Complexation of iron by siderophores a review of their solution and structural chemistry and biological function. Top Curr Chem 123:49–102

    Article  CAS  Google Scholar 

  • Remko M (2002) The gas-phase acidities of substituted hydroxamic and silahydroxamic acids: a comparative ab initio study. J Phys Chem A 20:5005–5010

    Article  CAS  Google Scholar 

  • Remko M, Šefčíková J (2000) Structure, reactivity and vibrational spectra of formohydroxamic and silaformohydroxamic acids: a comparative ab initio study. J Mol Struct (Theochem) 528:287–296

    Article  CAS  Google Scholar 

  • Remko M, Mach P, Schleyer PVR, Exner O (1993) Ab initio study of formohydroxamic acid isomers, their anions and protonated forms. J Mol Struct (Theochem) 279:139–150

    Google Scholar 

  • Rulíśek L, Vondrášek J (1998) Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J Inorg Biochem 71:115–127

    Article  Google Scholar 

  • Sałdyka M, Mielke Z (2002) Infrared matrix isolation studies and ab initio calculations of formhydroxamic acid. J Phys Chem A 106:3714–3721

    Article  CAS  Google Scholar 

  • Sałdyka M, Mielke Z (2003a) Cis-trans isomerism of the keto tautomer of formohydroxamic acid. Chem Phys Lett 371:713–718

    Article  CAS  Google Scholar 

  • Sałdyka M, Mielke Z (2003b) Photodecomposition of formohydroxamic acid. Matrix isolation FTIR and DFT studies. Phys Chem Chem Phys 5:4790–4797

    Article  CAS  Google Scholar 

  • Sałdyka M, Mielke Z (2004a) The interaction of formohydroxamic acid with nitrogen: FTIR matrix isolation and ab initio studies. J Mol Struct 708:183–188

    Article  CAS  Google Scholar 

  • Sałdyka M, Mielke Z (2004b) The interaction of formohydroxamic acid with carbon monoxide: FTIR matrix isolation and quantum chemistry studies. Chem Phys 300:209–216

    Article  CAS  Google Scholar 

  • Sałdyka M, Mielke Z (2005a) Intra- and intermolecular hydrogen bonding in formohydroxamic acid complexes with water and ammonia: infrared matrix isolation and theoretical study. Chem Phys 308:59–68

    Article  CAS  Google Scholar 

  • Sałdyka M, Mielke Z (2005b) Dimerization of the keto tautomer of acetohydroxamic acid—infrared matrix isolation and theoretical study. Spectrochim Acta, Part A 61:1491–1497

    Article  CAS  Google Scholar 

  • Sałdyka M, Mielke Z (2007) Keto–iminol tautomerism in acetohydroxamic and formohydroxamic acids. Vib Spectrosc 45:46–54

    Article  CAS  Google Scholar 

  • Sant’Anna CMR (2001) A semiempirical study on hydroxamic acids: formohydroxamic acid and derivatives of the allelochemical dimboa. Quim Nova 24:583–587

    Article  Google Scholar 

  • Santos MA, Gaspar M, Gonçalves MLSS, Amorim MT (1998) Siderophore analogues. A new bis-(amine, amide, hydroxamate) ligand. Synthesis, solution chemistry, electrochemistry and molecular mechanics calculations for the iron complex. Inorg Chim Acta 278:51–60

    Article  CAS  Google Scholar 

  • Santos JM, Carvalho S, Paniago EB, Duarte HA (2003) Potentiometric, spectrophotometric and density functional study of the interaction of N-hydroxyacetamide with oxovanadium(IV): the influence of ligand to the V(IV)/V(V) oxi-reduction reaction. J Inorg Biochem 95:14–24

    Article  CAS  Google Scholar 

  • Senent ML, Niño A, Muñoz Caro C, Ibeas S, García B, Leal JM, Secco F, Venturini M (2003) Deprotonation sites of acetohydroxamic acid isomers. A theoretical and experimental study. J Org Chem 68:6535–6542

    Google Scholar 

  • Senthilkumar L, Kolandaivel P (2006) Molecular interaction study of formohydroxamic acid (FHA) with water. J Mol Struct 791:149–157

    Article  CAS  Google Scholar 

  • Senthilnithy R, Gunawardhana HD, De Costa MDP, Dissanayake DP (2006) Absolute pK a determination for N-phenylbenzohydroxamic acid derivatives. J Mol Struct (Theochem) 761:21–26

    Article  CAS  Google Scholar 

  • Senthilnithy R, Weerasinghe S, Dissanayake DP (2008) Stability of hydroxamate ions in aqueous medium. J Mol Struct (Theochem) 851:109–114

    Article  CAS  Google Scholar 

  • Sigel H, McCormick DB (1970) On the discriminating behavior of metal ions and ligands with regard to their biological significance. Acc Chem Res 3:201–208

    Article  CAS  Google Scholar 

  • Šille J, Garaj V, Ježko P, Remko M (2010) Gas phase and solution stability of complexes L…M, where M = Li+, Na+, K+, Mg2+, or Ca2+ and L = R-(CO)NHOH (R = H, NH2, CH3, CF3, or phenyl). Acta Facultatis Pharmaceuticae Universitatis Comenianae Tomus L VII:1–18

    Google Scholar 

  • Sumner JB (1926) The isolation and crystallization of the enzyme urease: preliminary paper. J Biol Chem 69:435–441

    CAS  Google Scholar 

  • Tavakol H (2009) Computational study of simple and water-assisted tautomerism of hydroxamic acids. J Mol Struct (Theochem) 916:172–179

    Article  CAS  Google Scholar 

  • Taylor RJ, May I, Wallwork AL, Dennis IS, Hill NJ, Galkin BY, Zilberman BY, Fedorov YS (1998) The applications of formo- and aceto-hydroxamic acids in nuclear fuel reprocessing. J Alloy Compd 271–273:534–537

    Article  Google Scholar 

  • Tipton CL, Buell EL (1970) Ferric iron complexes of hydroxamic acids. Phytochemistry 9:1215–1217

    Article  CAS  Google Scholar 

  • Todd TA, Wigelund RA (2006) Advanced separation technologies for processing spent nuclear fuel and the potential benefits to a geologic repository. In: Lumetta GJ, Nash KL, Clark SB, Friese JI (eds) Separations for the nuclear fuel cycle in the 21st century. ACS symposium series, vol 933. ACS, Washington, pp 41–56

    Google Scholar 

  • Tuccinardi T, Martinelli A, Nuti E, Carelli P, Balzano F, Uccello-Barretta G, Murphy G, Rossello A (2006) Amber force field implementation, molecular modelling study, synthesis and MMP-1/MMP-2 inhibition profile of (R)-and (S)-N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-methylbutanamides. Bioorg Med Chem 14:4260–4276

    Article  CAS  Google Scholar 

  • Turi L, Dannenberg JJ, Rama J, Ventura ON (1992) Molecular orbital study of the structures of hydroxamic acids. J Phys Chem 96:3709–3712

    Article  CAS  Google Scholar 

  • Ventura ON, Rama JB, Turi L, Dannenberg JJ (1993) Acidity of hydroxamic acids: an ab initio and semiempirical study. J Am Chem Soc 115:5754–5761

    Article  CAS  Google Scholar 

  • Vrcek IV, Kos I, Weitner T, Birus M (2008) Acido-base behavior of hydroxamic acids: experimental and ab initio studies on hydroxyureas. J Phys Chem A 112:11756–11768

    Article  CAS  Google Scholar 

  • Wang X, Houk KN (1988) Theoretical elucidation of the origin of the anomalously high acidity of Meldrum’s acid. J Am Chem Soc 110:1870–1872

    Article  CAS  Google Scholar 

  • Wang Q, Zhang D, Wang J, Cai Z, Xu W (2006) Docking studies of nickel-peptide deformylase (PDF) inhibitors: exploring the new binding pockets. Biophys Chem 122:43–49

    Article  CAS  Google Scholar 

  • Wang Q, Wang J, Cai Z, Xu W (2008) Prediction of the binding modes between BB-83698 and peptide deformylase from Bacillus stearothermophilus by docking and molecular dynamics simulation. Biophys Chem 134:178–184

    Article  CAS  Google Scholar 

  • Weinberg ED (1989) Quart Rev Biol 64:261–290

    Article  CAS  Google Scholar 

  • Wheland GW (1955) Resonance in organic chemistry. Wiley, New York

    Google Scholar 

  • Wiberg KB, Laidig KE (1988) Acidity of (Z)- and (E)-methyl acetates: relationship to Meldrum’s acid. J Am Chem Soc 110:1872–1874

    Article  CAS  Google Scholar 

  • Wu D-H, Ho J-J (1998) Ab initio study of intramolecular proton transfer in formohydroxamic acid. J Phys Chem A 102:3582–3586

    Article  CAS  Google Scholar 

  • Yamin LJ, Ponce CA, Estrada MR, Vert FT (1996) Protonation and deprotonation of hydroxamic acids. An MO ab initio study. J Mol Struct (Theochem) 360:109–117

    Article  CAS  Google Scholar 

  • Yazal JE, Pang Y-P (1999) Novel stable configurations and tautomers of the neutral and deprotonated hydroxamic acids predicted from high-level ab initio calculations. J Phys Chem A 103:8346–8350

    Article  CAS  Google Scholar 

  • Yen S-J, Lin C-Y, Ho J-J (2000) Ab initio study of proton transfer between protonated formohydroxamic acid and water molecules. J Phys Chem A 104:11771–11776

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Kakkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kakkar, R. (2013). Theoretical Studies on Hydroxamic Acids. In: Gupta, S. (eds) Hydroxamic Acids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38111-9_2

Download citation

Publish with us

Policies and ethics