Skip to main content

Nicht-Kollaps-Interpretationen der Quantentheorie

  • Chapter
  • First Online:
Philosophie der Quantenphysik

Zusammenfassung

In Abschnitt 2.3.1 wurde das Messproblem in der Form eines Trilemmas formuliert. Demnach ist entweder (i) die Wellenfunktion keine vollständige Beschreibung, (ii) die Zeitentwicklung nicht durchgängig unitär oder führen (iii) Messungen nicht zu definiten Ergebnissen. Die in Abschnitt 2.3.1 dargestellte GRW-Theorie wählt (ii) – ergänzt die Schrödinger-Gleichung also um einen nichtlinearen Term, der einen physikalischen Mechanismus für den „tatsächlichen“ Kollaps der Wellenfunktion modelliert. Auch die Kopenhagener Deutung leugnet die durchgängige Zeitentwicklung gemäß der Schrödinger-Gleichung; im Gegensatz zur GRW-Theorie wird diesem Vorgang jedoch keine realistische Deutung gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 5

  • Albert, David und Barry Loewer (1988). Interpreting the many-worlds interpretation. Synthese 77, 195–213.

    Article  Google Scholar 

  • Albert, David (2010). Probability in the Everett Picture. In: Saunders et al. (2010, 355–368).

    Google Scholar 

  • Allori, Valia, Sheldon Goldstein, Roderich Tumulka und Nino Zanghì (2011). Many worlds and Schrödinger’s first quantum theorie. British Journal for the Philosophy of Science 62, 1–27.

    Article  Google Scholar 

  • Bacciagaluppi, Guido (2002). Remarks on space-time and locality in Everett’s interpretation. In: T. Placek und J. Butterfield (Hg.) Non-locality and Modality. (NATO Science Series), Dordrecht: Kluwer.

    Google Scholar 

  • Bacciagaluppi, Guido und Antony Valentini (2009). Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ballentine, Leslie (1971). Can the statistical postulate of quantum theory be derived – a critique of the many-universes interpretation. Foundations of Physics 3(2), 229.

    Google Scholar 

  • Barrett, Jeffrey A. (1999). The Quantum Mechanics of Minds and Worlds. Oxford: Oxford University Press.

    Google Scholar 

  • Barrett, Jeffrey A. (2011). Everett’s pure wave mechanics and the notion of worlds. European Journal for the Philosophy of Science 1, 277–302.

    Google Scholar 

  • Bartels, Andreas (2007). Wissenschaftlicher Realismus. In: A. Bartels und M. Stöckler (Hg.) Wissenschaftstheorie. Paderborn: mentis.

    Google Scholar 

  • Bell, John S. (1980). De-Broglie-Bohm, delayed-choice, double-slit experiment, and density matrix. In: Bell et al. (2001, 94).

    Google Scholar 

  • Bell, Mary, Kurt Gottfried und Martinus Veltman (Hg.) (2001). John S. Bell on the foundation of Quantum Mechanics. Singapore: World Scientific.

    Book  Google Scholar 

  • Bohm, David (1952). A suggested interpretation of the quantum theory in terms of ‚hidden‘ variables. Physical Review 85, 166 (1. Teil) und 180 (2. Teil).

    Google Scholar 

  • Bohm, David (1953). Proof that probability density approaches | |2 in causal interpretation of the quantum theory. Physical Review 89, 458.

    Google Scholar 

  • Bohm, David und Basil J. Hiley (1993). The Undivided Universe. London: Routledge. Bohr, Niels (1935). Quantum mechanics and physical reality. Nature 136, 1025–1026.

    Google Scholar 

  • de Broglie, Louis (1927) La structure atomique de la matière et du rayonnement et la méchanique ondulatoire. Journal de Physique VI 8, 25.

    Google Scholar 

  • Brown, Harvey und David Wallace (2005). Solving the measurement problem: De Broglie- Bohm loses out to Everett. Foundations of Physics 35, 517.

    Google Scholar 

  • Bub, Jeffrey (1997). Interpreting the Quantum World. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cushing, James T. (1995). Quantum tunneling times: a crucial test for the causal program? Foundations of Physics 25, 296.

    Google Scholar 

  • Daumer, Martin, Detlef Dürr, Sheldon Goldstein und Nino Zanghì (1996). Naive realism about operators. Erkenntnis 45, 379–397.

    Google Scholar 

  • Deotto, Enrico und GianCarlo Ghirardi (1998). Bohmian mechanics revisited. Foundations of Physics 28, 1.

    Google Scholar 

  • DeWitt, Bryce S. und Neil Graham (Hg.) (1973). The Many-Worlds Interpretation of Quantum Mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Deutsch, David (1985). Quantum theory as a universal physical theory. International Journal of Theoretical Physics 24(1), 1–41.

    Article  Google Scholar 

  • Deutsch, David (1996). Comment on Lockwood. British Journal for the Philosophy of Science 47(2), 222–228.

    Article  Google Scholar 

  • Deutsch, David (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London A 455, 3129–3137.

    Google Scholar 

  • Dürr, Detlef, Sheldon Goldstein und Nino Zanghì (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics 67, 843 und quantph/ 0308039 (die Seitenangaben beziehen sich auf die arXiv Version).

    Google Scholar 

  • Dürr, Detlef, Sheldon Goldstein und Nino Zanghì (1996). Bohmian mechanics and the meaning of the wave function. In R. S. Cohen, M. Horne und J. Stachel (Hg.) (1996). Experimental Metaphysics – Quantum Mechanical Studies in Honor of Abner Shimony. Boston Studies in the Philosophy of Science, Dordrecht: Kluwer.

    Google Scholar 

  • Dürr, Detlef (2001). Bohmsche Mechanik als Grundlage der Quantenmechanik. Berlin: Springer.

    Book  Google Scholar 

  • Dürr, Detlef und Dustin Lazarovici (2012). Quantenphysik ohne Quantenphilosophie. In: M. Esfeld (Hg.) Philosophie der Physik. Berlin: Suhrkamp.

    Google Scholar 

  • Dewdney, Chris und Basil J. Hiley (1982). A Quantum potential description of onedimensional time-dependent scattering from square barriers and square wells. Foundations of Physics 12(1), 27–48.

    Article  Google Scholar 

  • Elby, Andrew und Jeffrey Bub (1994). Triorthogonal uniqueness theorem and its relevance to the interpretation of quantum mechanics. Physical Review A 49(5), 4213.

    Google Scholar 

  • Everett I II, Hugh (1957). „Relative state“ formulation of quantum mechanics. Review of Modern Physics 29(3), 454.

    Google Scholar 

  • Greaves, Hilary (2004). Understanding Deutsch’s probability in a deterministic multiverse. Studies in History and Philosophy of Modern Physics 35, 423.

    Google Scholar 

  • Greaves, Hilary (2007). Probability in the Everett interpretation. Philosophy Compass 2(1), 109–128.

    Article  Google Scholar 

  • Greenberger, Daniel, Klaus Hentschel und Friedel Weinert (Hg.) (2009). Compendium of Quantum Physics. Dordrecht, Heidelberg, London, New York: Springer.

    Book  Google Scholar 

  • Hacking, Ian (1983). Representing and Intervening. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hartle, James (1968). Quantum mechanics of individual systems. American Journal of Physics 36, 704–712.

    Article  Google Scholar 

  • Heisenberg, Werner (1959). Physik und Philosophie. Frankfurt/M.: Ullstein.

    Google Scholar 

  • Hemmo, Meir und Itamar Pitowsky (2007). Quantum probability and many worlds. Studies in History and Philosophy of Modern Physics 38, 333–350.

    Article  Google Scholar 

  • Hiley, Basil J. (1999). Active information and teleportation. In: D. Greenberger et al. (Hg.) Epistemological and Experimental Perspectives on Quantum Physics. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Holland, Peter R. (1993). The Quantum Theory of Motion. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Jammer, Max (1974). The philosophy of quantum mechanics. New York: Wiley.

    Google Scholar 

  • Landau, Lev D. und Jewgeni M. Lifschitz (2011). Lehrbuch der theoretischen Physik (Bd. 3) Quantenmechanik. Unveränderter Nachdruck der 9., Auflage 1986. Frankfurt/M.: Harri Deutsch.

    Google Scholar 

  • Lockwood, Michael (1996). ’Many minds’ interpretations of quantum mechanics. British Journal for the Philosophy of Science 47, 159–188.

    Article  Google Scholar 

  • Madelung, Erwin (1926). Eine anschauliche Deutung der Gleichung von Schrödinger. Naturwissenschaften 14(45), 1004.

    Google Scholar 

  • Maudlin, Tim (1995). Three measurement problems. Topoi 14(1), 7.

    Google Scholar 

  • Maudlin, Tim (2010). Can the World be Only Wavefunction? In: Saunders et al. (2010, 121–143).

    Google Scholar 

  • Mermin, David (1990). Simple Unified Form for the Major No-Hidden Variables Theorems. Physical Review Letters 65, 3373.

    Google Scholar 

  • Möllenstedt, Gottfried und Claus Jönsson (1959). Elektronen-Mehrfachinterferenzen an regelmäßig hergestellten Feinspalten. Zeitschrift für Physik 155, 472–474.

    Article  Google Scholar 

  • Myrvold, Wayne C. (2003). On some early objections to Bohm’s theory. International Studies in the Philosophy of Science 17(1), 7–24.

    Article  Google Scholar 

  • Pagonis, Constantine und Rob Clifton (1995). Unremarkable contextualism: dispositions in the Bohm theory. Foundations of Physics 25(2), 281.

    Article  Google Scholar 

  • Passon, Oliver (2004). What you always wanted to know about Bohmian mechanics but were afraid to ask. Physics and Philosophy 3.

    Google Scholar 

  • Passon, Oliver (2010). Bohmsche Mechanik. 2. verbesserte Auflage, Frankfurt/M.: Harri Deutsch.

    Google Scholar 

  • Philippidis, Chris, Chris Dewdney und Basil J. Hiley (1979). Quantum interference and the quantum potential. Il Nuovo Cimento 52 B, 15.

    Google Scholar 

  • Saunders, Simon (1998). Quantum mechanics, and probability. Synthese 114, 373.

    Google Scholar 

  • Saunders, Simon, Jonathan Barrett, Adrian Kent und David Wallace (Hg.) (2010). Many Worlds? Everett, Quantum Theory, & Reality. Oxford: Oxford University Press.

    Google Scholar 

  • Schlosshauer, Maximilian (2005). Decoherence, the measurement problem, and interpretations of quantum mechanics. Review of Modern Physics 76, 1267–1305.

    Article  Google Scholar 

  • Schrödinger, Erwin (1926). Quantisierung als Eigenwertproblem (Vierte Mitteilung). Annalen der Physik 81, 109–139.

    Article  Google Scholar 

  • Tegmark, Max (1998). The Interpretation of quantum mechanics: many worlds or many words. Fortschritte der Physik 46, 855–862.

    Article  Google Scholar 

  • Teufel, Stefan und Roderich Tumulka (2005). Simple proof for global existence of Bohmian trajectories. Communications in Mathematical Physics 258, 349–365.

    Article  Google Scholar 

  • Tumulka, Roderich (2007). The ’unromantic pictures’ of quantum theory. Journal of Physics A: Mathematical and Theoretical 40, 3245–3273.

    Article  Google Scholar 

  • Vaidman, Lev (1998). On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. International Studies in the Philosophy of Science 12, 245–261.

    Google Scholar 

  • Vaidman, Lev (2008). Many-worlds Interpretation of quantum mechanics. In: E. N. Zalta (Hg.) The Stanford Encyclopedia of Philosophy (Fall 2008 Edition).

    Google Scholar 

  • Valentini, Antony (1991). Signal-locality, uncertainty, and the subquantum H-theorem. Physics Letters A 156, No. 1–2, 5 (I) Physics Letters A 158, No. 1–2, 1 (II).

    Google Scholar 

  • Valentini, Antony (2004). Universal signature of non-quantum systems. Physics Letters A 332, 187–193.

    Article  Google Scholar 

  • Valentini, Antony und Hans Westman (2005). Dynamical origin of quantum probabilities. Proceedings of the Royal Society of London A 461, 253–272.

    Google Scholar 

  • Wallace, David (2003). Everettian rationality: defending Deutsch’s approach to probability in the Everett interpretation. Studies in the History and Philosophy of Modern Physics 34, 415–438.

    Article  Google Scholar 

  • Wallace, David (2005). Language use in a branching universe. Online verfügbar unter: http://philsci-archive.pitt.edu/2554/

  • Wallace, David (2010). The Everett interpretation. In Batterman (Hg.) The Oxford Handbook of Philosophy of Physics (in Vorbereitung, zitiert nach der preprint Version in http://philsci-archive.pitt.edu).

  • Zeh, Hans Dieter (1970). On the interpretation of measurement in quantum theory. Foundations of Physics 1, 69–76.

    Article  Google Scholar 

  • Zurek, Wojciech H. (1981). Pointer basis of quantum apparatus: into what mixture does the wave packet collapse. Physical Review D 24, 1516–1525.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Passon .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Passon, O. (2015). Nicht-Kollaps-Interpretationen der Quantentheorie. In: Philosophie der Quantenphysik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37790-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37790-7_5

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37789-1

  • Online ISBN: 978-3-642-37790-7

  • eBook Packages: Humanities, Social Science (German Language)

Publish with us

Policies and ethics