Skip to main content

Analytical Methods for Corona Evaluations

  • Chapter
  • First Online:
Protein-Nanoparticle Interactions

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 15))

Abstract

In order to have deep understanding on the nature and composition of the formed protein corona, one should have adequate information on the available characterization techniques. In this chapter, comprehensive descriptions on the protein corona evaluation methods (e.g., spectroscopy methods (UV/Vis, Raman, fluorescence, mass spectrometry, nuclear magnetic resonance, etc.), dynamic light scattering, circular dichroism, differential centrifugal sedimentation, scanning and transmission electron microscopies, X-ray crystallography, chromatography, etc.) together with their limitations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  PubMed  CAS  Google Scholar 

  2. Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 64:246–255

    Article  Google Scholar 

  3. Li L, Mu Q, Zhang B, Yan B (2010) Analytical strategies for detecting nanoparticle-protein interactions. Analyst 135:1519–1530

    Article  PubMed  CAS  Google Scholar 

  4. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein−nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  PubMed  CAS  Google Scholar 

  5. Cedervall T, Lynch I, Foy M, Berggard T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl 46:5754–5756

    Article  PubMed  CAS  Google Scholar 

  6. Semple SC, Chonn A, Cullis PR (1998) Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev 32:3–17

    Article  PubMed  CAS  Google Scholar 

  7. Moore A, Weissleder R, Bogdanov A (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140–1145

    Article  PubMed  CAS  Google Scholar 

  8. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  PubMed  CAS  Google Scholar 

  9. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta 1784:1020–1027

    Article  PubMed  CAS  Google Scholar 

  10. Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, Ji L, Wang F, Si Z, Zhang B, Yan B (2008) Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem C 112:3300–3307

    Article  CAS  Google Scholar 

  11. Su Z, Leung T, Honek JF (2006) Conformational selectivity of peptides for single-walled carbon nanotubes. J Phys Chem B 110:23623–23627

    Article  PubMed  CAS  Google Scholar 

  12. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920

    Article  PubMed  CAS  Google Scholar 

  13. Chandra G, Ghosh KS, Dasgupta S, Roy A (2010) Evidence of conformational changes in adsorbed lysozyme molecule on silver colloids. Int J Biol Macromol 47:361–365

    Article  PubMed  CAS  Google Scholar 

  14. Chakraborti S, Chatterjee T, Joshi P, Poddar A, Bhattacharyya B, Singh SP, Gupta V, Chakrabarti P (2010) Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir 26:3506–3513

    Article  PubMed  CAS  Google Scholar 

  15. Xu Z, Liu XW, Ma YS, Gao HW (2010) Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles. Environ Sci Pollut Res Int 17:798–806

    Article  PubMed  CAS  Google Scholar 

  16. Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaele D, Taran F, Georgin D, Couvreur P, Taverna M (2007) Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system. Electrophoresis 28:2252–2261

    Article  PubMed  CAS  Google Scholar 

  17. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    Article  PubMed  CAS  Google Scholar 

  18. Thode K, Lück M, Semmler W, Müller RH, Kresse M (1997) Determination of plasma protein adsorption on magnetic iron oxides: sample preparation. Pharm Res 14:905–910

    Article  PubMed  CAS  Google Scholar 

  19. Gessner A, Waicz R, Lieske A, Paulke BR, Mäder K, Müller RH (2000) Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 196:245–249

    Article  PubMed  CAS  Google Scholar 

  20. Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187

    Article  PubMed  Google Scholar 

  21. Tessier PM, Jinkoji J, Cheng YC, Prentice JL, Lenhoff AM (2008) Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay. J Am Chem Soc 130:3106–3112

    Article  PubMed  CAS  Google Scholar 

  22. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632

    Article  PubMed  CAS  Google Scholar 

  23. Delfino I, Cannistraro S (2009) Optical investigation of the electron transfer protein azurin-gold nanoparticle system. Biophys Chem 139:1–7

    Article  PubMed  CAS  Google Scholar 

  24. Edri E, Regev O (2008) pH effects on BSA-dispersed carbon nanotubes studied by spectroscopy-enhanced composition evaluation techniques. Anal Chem 80:4049–4054

    Article  PubMed  CAS  Google Scholar 

  25. You CC, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UH, Rotello VM (2007) Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat Nanotechnol 2:318–323

    Article  PubMed  CAS  Google Scholar 

  26. Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721

    Article  PubMed  CAS  Google Scholar 

  27. Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580

    Article  PubMed  Google Scholar 

  28. Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, Bhatia SN, Sailor M, Ruoslahti E (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933

    Article  PubMed  CAS  Google Scholar 

  29. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    Article  PubMed  CAS  Google Scholar 

  30. Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlback B, Dawson KA, Linse S, Cedervall T (2009) Complete high-density lipoproteins in nanoparticle corona. FEBS J 276:3372–3381

    Article  PubMed  CAS  Google Scholar 

  31. Stayton PS, Drobny GP, Shaw WJ, Long JR, Gilbert M (2003) Molecular recognition at the protein-hydroxyapatite interface. Crit Rev Oral Biol Med 14:370–376

    Article  PubMed  Google Scholar 

  32. Prakasham RS, Devi GS, Rao CS, Sivakumar VS, Sathish T, Sarma PN (2010) Nickel-impregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization. Appl Biochem Biotechnol 160:1888–1895

    Article  PubMed  CAS  Google Scholar 

  33. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  PubMed  CAS  Google Scholar 

  34. Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K (2009) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahman, M., Laurent, S., Tawil, N., Yahia, L., Mahmoudi, M. (2013). Analytical Methods for Corona Evaluations. In: Protein-Nanoparticle Interactions. Springer Series in Biophysics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37555-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37555-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37554-5

  • Online ISBN: 978-3-642-37555-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics