Analytical Methods for Corona Evaluations

  • Masoud Rahman
  • Sophie Laurent
  • Nancy Tawil
  • L’Hocine Yahia
  • Morteza Mahmoudi
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 15)


In order to have deep understanding on the nature and composition of the formed protein corona, one should have adequate information on the available characterization techniques. In this chapter, comprehensive descriptions on the protein corona evaluation methods (e.g., spectroscopy methods (UV/Vis, Raman, fluorescence, mass spectrometry, nuclear magnetic resonance, etc.), dynamic light scattering, circular dichroism, differential centrifugal sedimentation, scanning and transmission electron microscopies, X-ray crystallography, chromatography, etc.) together with their limitations are provided.


Human Serum Albumin Isothermal Titration Calorimetry Fluorescence Correlation Spectroscopy Protein Corona Circular Dichroism Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055PubMedCrossRefGoogle Scholar
  2. 2.
    Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 64:246–255CrossRefGoogle Scholar
  3. 3.
    Li L, Mu Q, Zhang B, Yan B (2010) Analytical strategies for detecting nanoparticle-protein interactions. Analyst 135:1519–1530PubMedCrossRefGoogle Scholar
  4. 4.
    Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein−nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637PubMedCrossRefGoogle Scholar
  5. 5.
    Cedervall T, Lynch I, Foy M, Berggard T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl 46:5754–5756PubMedCrossRefGoogle Scholar
  6. 6.
    Semple SC, Chonn A, Cullis PR (1998) Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev 32:3–17PubMedCrossRefGoogle Scholar
  7. 7.
    Moore A, Weissleder R, Bogdanov A (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140–1145PubMedCrossRefGoogle Scholar
  8. 8.
    Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437PubMedCrossRefGoogle Scholar
  9. 9.
    Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta 1784:1020–1027PubMedCrossRefGoogle Scholar
  10. 10.
    Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, Ji L, Wang F, Si Z, Zhang B, Yan B (2008) Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem C 112:3300–3307CrossRefGoogle Scholar
  11. 11.
    Su Z, Leung T, Honek JF (2006) Conformational selectivity of peptides for single-walled carbon nanotubes. J Phys Chem B 110:23623–23627PubMedCrossRefGoogle Scholar
  12. 12.
    Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920PubMedCrossRefGoogle Scholar
  13. 13.
    Chandra G, Ghosh KS, Dasgupta S, Roy A (2010) Evidence of conformational changes in adsorbed lysozyme molecule on silver colloids. Int J Biol Macromol 47:361–365PubMedCrossRefGoogle Scholar
  14. 14.
    Chakraborti S, Chatterjee T, Joshi P, Poddar A, Bhattacharyya B, Singh SP, Gupta V, Chakrabarti P (2010) Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir 26:3506–3513PubMedCrossRefGoogle Scholar
  15. 15.
    Xu Z, Liu XW, Ma YS, Gao HW (2010) Interaction of nano-TiO2 with lysozyme: insights into the enzyme toxicity of nanosized particles. Environ Sci Pollut Res Int 17:798–806PubMedCrossRefGoogle Scholar
  16. 16.
    Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaele D, Taran F, Georgin D, Couvreur P, Taverna M (2007) Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system. Electrophoresis 28:2252–2261PubMedCrossRefGoogle Scholar
  17. 17.
    Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534PubMedCrossRefGoogle Scholar
  18. 18.
    Thode K, Lück M, Semmler W, Müller RH, Kresse M (1997) Determination of plasma protein adsorption on magnetic iron oxides: sample preparation. Pharm Res 14:905–910PubMedCrossRefGoogle Scholar
  19. 19.
    Gessner A, Waicz R, Lieske A, Paulke BR, Mäder K, Müller RH (2000) Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 196:245–249PubMedCrossRefGoogle Scholar
  20. 20.
    Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187PubMedCrossRefGoogle Scholar
  21. 21.
    Tessier PM, Jinkoji J, Cheng YC, Prentice JL, Lenhoff AM (2008) Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay. J Am Chem Soc 130:3106–3112PubMedCrossRefGoogle Scholar
  22. 22.
    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632PubMedCrossRefGoogle Scholar
  23. 23.
    Delfino I, Cannistraro S (2009) Optical investigation of the electron transfer protein azurin-gold nanoparticle system. Biophys Chem 139:1–7PubMedCrossRefGoogle Scholar
  24. 24.
    Edri E, Regev O (2008) pH effects on BSA-dispersed carbon nanotubes studied by spectroscopy-enhanced composition evaluation techniques. Anal Chem 80:4049–4054PubMedCrossRefGoogle Scholar
  25. 25.
    You CC, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UH, Rotello VM (2007) Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat Nanotechnol 2:318–323PubMedCrossRefGoogle Scholar
  26. 26.
    Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721PubMedCrossRefGoogle Scholar
  27. 27.
    Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580PubMedCrossRefGoogle Scholar
  28. 28.
    Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, Bhatia SN, Sailor M, Ruoslahti E (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933PubMedCrossRefGoogle Scholar
  29. 29.
    Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167PubMedCrossRefGoogle Scholar
  30. 30.
    Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlback B, Dawson KA, Linse S, Cedervall T (2009) Complete high-density lipoproteins in nanoparticle corona. FEBS J 276:3372–3381PubMedCrossRefGoogle Scholar
  31. 31.
    Stayton PS, Drobny GP, Shaw WJ, Long JR, Gilbert M (2003) Molecular recognition at the protein-hydroxyapatite interface. Crit Rev Oral Biol Med 14:370–376PubMedCrossRefGoogle Scholar
  32. 32.
    Prakasham RS, Devi GS, Rao CS, Sivakumar VS, Sathish T, Sarma PN (2010) Nickel-impregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization. Appl Biochem Biotechnol 160:1888–1895PubMedCrossRefGoogle Scholar
  33. 33.
    Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768PubMedCrossRefGoogle Scholar
  34. 34.
    Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K (2009) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Masoud Rahman
    • 1
  • Sophie Laurent
    • 2
  • Nancy Tawil
    • 3
  • L’Hocine Yahia
    • 3
  • Morteza Mahmoudi
    • 4
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California in DavisDavisUSA
  2. 2.NanoBio Interactions Laboratory Department of Nanotechnology Faculty of PharmacyTehran University of Medical SciencesTehranIran
  3. 3.Laboratoire d’Innovation et, d’Analyse de BioperformanceÉcole Polytechnique de MontréalMontrealCanada
  4. 4.Pasteur Institute of Iran, National Cell Bank NanoBio Interactions LaboratoryTehranIran

Personalised recommendations