Skip to main content

Analysis of Time Variations of the Gravity Field Over Europe Obtained from GRACE Data in Terms of Geoid Height and Mass Variation

  • Conference paper
  • First Online:
Earth on the Edge: Science for a Sustainable Planet

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 139))

Abstract

Time variations of the gravity field obtained from the series of geopotential models developed from GRACE (Gravity Recovery and Climate Experiment) data can be interpreted in terms of geoid heights and mass time variations with unprecedented temporal resolution.

Following the results of the authors previous research, the series of filtered monthly solutions of geopotential models developed from GRACE data and GLDAS (Global Land Data Assimilation System) hydrological models were used in the analysis. Variations of hydrology and geoid heights at the continental part of Europe and selected 14 subareas were estimated with a spatial resolution of 0.5º × 0.5º for the period August 2002–June 2010. Variations in mass distribution obtained from geopotential models were compared with the respective results obtained from hydrological data.

Annual periodicity of hydrology and geoid height variations with minima in September and maxima in March is observed for the area of Europe. The linear trend is also present in the signal. Contrary to the area of Northern Europe (Norway, Sweden, Finland) where dominates the signal due to Post Glacial Rebound as a secular trend, for the subareas of Central Europe only an annual periodicity appears. Results obtained using GRACE data show high correlation with the results calculated using GLDAS hydrological models.

Models of geoid height changes (parameters of trend and seasonal variations) were developed for the area of Europe and for 14 subareas. To verify those models values of geoid height changes calculated using GRACE data over the period July 2010–October 2010 were compared with the respective ones based on the models developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OB, Hinderer J (2005) Global inter-annual gravity changes from GRACE: early results. Geoph Res Lett 32:L01402. doi:10.1029/2004GL020948

    Google Scholar 

  • Bettadpur SV (2007) UTCSR level-2 processing standards document for level-2 product realise 0004. Center for Space Res, Univ. of Texas, Austin

    Google Scholar 

  • Beutler G, Jäggi A, Mervart L, Meyer U (2010) The celestial mechanics approach: theoretical foundations. J Geod 84(10):605–624. doi:10.1007/s00190-010-0401-7

    Article  Google Scholar 

  • Biancale R, Lemoine J-M, Balmino G, Bruinsma S, Perosanz F, Marty J-C (2007) 5 years of gravity variations from GRACE and LAGEOS data at 10-day intervals over the period from July 29th 2002 to June 22nd 2007. http://bgi.cnes.fr:8110/geoid-variations/README.html

  • Chambers DP (2006) Evaluation of new GRACE time-variable gravity data over the ocean. Geophys Res Lett 33(17):LI7603

    Google Scholar 

  • Chen JL, Wilson CR, Seo KW (2006a) Optimized smoothing of gravity recovery and climate experiment (GRACE) time-variable gravity observations. J Geophys Res 111:B06408. doi:10.1029/2005JB004064

    Google Scholar 

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006b) Antarctic mass rates from GRACE. Geophys Res Lett 33:L11502. doi:10.1029/2006GL026369

    Article  Google Scholar 

  • Davis JL, Tamisiea ME, Elósegui P, Mitrovica JX, Hill EM (2008) A statistical filtering approach for Gravity Recovery and Climate Experiment (GRACE) gravity data. J Geophys Res 113:B04410. doi:10.1029/2007JB005043

    Google Scholar 

  • Flechtner F (2007) GRACE 327-743: GFZ Level-2 processing standards document for Level-2 product realise 0004. GeoForschungsZentrum Potsdam, Germany

    Google Scholar 

  • Flechtner F, Dahle C, Neumayer KH, König R, Förste C (2010) The release 04 CHAMP and GRACE EIGEN gravity models. In: Flechtner F et al (eds) System Earth via geodetic-geophysical space techniques. Advanced technologies in Earth sciences, vol 1. Springer, Berlin, pp 41–58. doi:10.1007/978-3-642-10228-8_4

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGENGL04C. J Geod 82:331–346

    Article  Google Scholar 

  • Hinderer J, Andersen O, Lemoine F, Crossley D, Boy JP (2006) Seasonal changes in the European gravity field from GRACE: a comparison with superconducting gravimeters and hydrology model predictions. J Geodyn 41(1–3):59–68. doi:10.1016/j.jog.2005.08.037

    Article  Google Scholar 

  • Holger S, Denker H, Mueller J (2008) Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamical models. J Geodyn 46(3–5):155–164. doi:10.1016/j.jog.2008.03.002

    Google Scholar 

  • Horwath M, Dietrich R (2006) Error structures of GRACE monthly solutions and their propagation into inferred regional mass variations. Geophys Res Lett 33:L07502, 5 pp. doi:10.1029/2005GL025550

  • Ilk KH, Feuchtinger M, Mayer-Gürr T (2005) Gravity field recovery and validation by analysis of short arcs of a satellite-to-satellite tracking experiment as CHAMP and GRACE. In: Sansò F (ed) A window on the future of geodesy. IUGG Gen Ass 2003, IAG symposia, vol 128, Sapporo, Japan, June 30–July 11 2003. Springer, pp 189–194

    Google Scholar 

  • Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175:417–432

    Article  Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time variable GRACE-type gravity field models. J Geod 81:733–749

    Article  Google Scholar 

  • Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geod 83(10):903–913. doi:10.1007/s00190-009-0308-3

    Article  Google Scholar 

  • Lemoine JM, Bruinsma S, Loyer S, Biancale R, Marty JC, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39:1620–1629. doi:10.1016/j.asr.2007.03.062

    Article  Google Scholar 

  • Liu X, Ditmar P, Siemes C, Slobbe DC, Revtova E, Klees R, Riva R, Zhao Q (2010) DEOS mass transport model (DMT-1) based on grace satellite data: methodology and validation. Geophys J Int 181(2):769–788

    Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, , Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53:198–208

    Article  Google Scholar 

  • Sasgen I, Martinec Z, Fleming K (2006) Wiener optimal filtering of GRACE data. Stud Geophys Geod 50:499–508

    Article  Google Scholar 

  • Schmidt R, Flechtner F, Reigber C, Schwintzer P, Günter A, Doll P, Ramillien G, Cazenave A, Petrovic S, Jochman H, Wunsch J (2006) GRACE observations of changes in continental water storage. Glob Planet Change 50(1–2):112–126. doi:10.1016/j.gloplacha.2004.11.018

    Article  Google Scholar 

  • Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, Konig R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4–5):319–334. doi:10.1007/s10712-008-9033-3

    Article  Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, , Kang Z, Nagel P, Pastor R, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79:467–478

    Article  Google Scholar 

  • Watkins MM, Yuan D (2007) GRACE JPL level-2 processing standards document for level-2 product release 04, GRACE 327–744 (Rev. 4.0)

    Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229

    Article  Google Scholar 

  • Wouters B, Schrama EJO (2007) Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics. Geophys Res Lett 34:L23711. doi:10.1029/2007Gl032098

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Polish Ministry of Science and Higher Education. This work was carried out within the research grant no. N N526 155037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Krynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krynski, J., Kloch-Glowka, G., Szelachowska, M. (2014). Analysis of Time Variations of the Gravity Field Over Europe Obtained from GRACE Data in Terms of Geoid Height and Mass Variation. In: Rizos, C., Willis, P. (eds) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37222-3_48

Download citation

Publish with us

Policies and ethics