Skip to main content

Liquid Junction Potentials

  • Chapter
  • First Online:
Handbook of Reference Electrodes

Abstract

The liquid junction potential (LJP), as considered in relation to practical aspects of reference electrodes, is a rather bothering experimental problem. The additional and always unknown potential drop between the electrolytes of the electrode under study and of the reference electrode is harmful for the accuracy of potential measurements. In addition, the existence of this drop disturbs the equilibrium in the circuit (if any) and complicates stabilization of nonequilibrium systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The problem looks slightly philosophic, as any calculated \( \varDelta {\phi_{\mathrm{ diff}}} \) values cannot pretend on exact agreement with experiment because of model approximations. In [31] the values computed on the basis of concentration-dependent conductivity for 0.1–0.2 M solutions demonstrated better agreement with experimental emf data as compared to the values based on the limiting conductivity, but both experimental and theoretical values have no exact meaning of LJP. In practice, when calculations are required for junctions with high solution concentration, there are simply no quantitative data on conductivity.

References

  1. Petrii OA, Tsirlina GA (2003) Electrode potentials. In: Bard AJ, Stratmann M, Gileadi E, Urbakh M (eds) Encyclopedia of electrochemistry, vol 1. Wiley-VCH, New York, pp 1–25

    Google Scholar 

  2. Izutsu K (2011) Anal Sci 27:685

    Article  CAS  Google Scholar 

  3. Izutsu K (2008) Bull Chem Soc Jpn 81:703

    Article  CAS  Google Scholar 

  4. Izutsu K (2010) Bull Chem Soc Jpn 83:39

    Article  CAS  Google Scholar 

  5. Koepp HM, Wendt H, Strehlow H (1960) Z Elektrochem 64:483

    CAS  Google Scholar 

  6. Izutsu K (2002) Electrochemistry in nonaqueous solutions. Wiley-VCH, Darmstadt

    Book  Google Scholar 

  7. Gritzner G, Kuta J (1984) Pure Appl Chem 56:461

    Article  Google Scholar 

  8. Pleskov VA (1947) Uspekhi Khimii 16:254

    CAS  Google Scholar 

  9. Pleskov VA (1949) Zh Fiz Khimii 23:104

    CAS  Google Scholar 

  10. Kolthoff IM, Thomas FG (1965) J Phys Chem 69:3049

    Article  CAS  Google Scholar 

  11. Parker AJ (1976) Electrochim Acta 21:671

    Article  CAS  Google Scholar 

  12. Krishtalik LI, Alpatova NM, Ovsyannikova EV (1991) Electrochim Acta 36:435

    Article  CAS  Google Scholar 

  13. Krishtalik LI (2008) Electrochim Acta 53:3722 [Erratum (2009) Electrochim Acta 54:4741]

    Article  CAS  Google Scholar 

  14. Krishtalik LI (2008) Russ J Electrochem 44:43

    Article  CAS  Google Scholar 

  15. Kuznetsov AnM, Maslii AN, Krishtalik LI (2009) Russ J Electrochem 45:87

    Article  CAS  Google Scholar 

  16. Roy LE, Jakubikova E, Guthrie MG, Batista ER (2009) J Phys Chem A 113:6745

    Article  CAS  Google Scholar 

  17. Namazian M, Lin CY, Coote ML (2010) J Chem Theory Comput 6:2721

    Article  CAS  Google Scholar 

  18. Baik M-H, Friesner RA (2002) J Phys Chem A 106:7407

    Article  CAS  Google Scholar 

  19. Bunakova LV, Khanova LA, Topolev VV, Krishtalik LI (2004) J New Mater Electrochem Syst 7:241

    CAS  Google Scholar 

  20. Khanova LA, Topolev VV, Krishtalik LI (2006) Chem Phys 326:33

    Article  CAS  Google Scholar 

  21. Izutsu K (2011) J Solid State Electrochem 15:1719

    Article  CAS  Google Scholar 

  22. Samec Z (2008) Interface of the immiscible liquids. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, pp 359–360

    Google Scholar 

  23. Izutsu K, Kobayashi N (2005) J Electroanal Chem 574:197

    Article  CAS  Google Scholar 

  24. Dickson EJF, Limon-Petersen JG, Compton RG (2011) J Solid State Electrochem 15:1335

    Article  Google Scholar 

  25. Ward KR, Dickson EJF, Compton RG (2010) J Phys Chem B 114:4521

    Article  CAS  Google Scholar 

  26. Sokalski T, Lingenfelter P, Lewenstam A (2003) J Phys Chem B 107:2443

    Article  CAS  Google Scholar 

  27. Planck M (1890) Ann Physik 40:561

    Article  Google Scholar 

  28. Henderson P (1907) Z Phys Chem 59:118

    CAS  Google Scholar 

  29. Henderson P (1908) Z Phys Chem 63:325

    CAS  Google Scholar 

  30. Lingane JJ (1958) Electroanalytical chemistry, 2nd edn. Prentice Hall, New York

    Google Scholar 

  31. Lewis GN, Sargent LW (1909) J Am Chem Soc 31:636

    Google Scholar 

  32. Kang KH, Kang IS (2004) J Electroanal Chem 566:331

    Article  CAS  Google Scholar 

  33. Park J, Hun KY, Li X (2006) J Electroanal Chem 591:141

    Article  CAS  Google Scholar 

  34. Damaskin BB, Tsirlina GA, Borzenko MI (1998) Russ J Electrochem 34:199

    Google Scholar 

  35. Gumming AC (1907) Trans Faraday Soc 2:213

    Article  Google Scholar 

  36. Gumming AC (1912) Trans Faraday Soc 8:86

    Article  Google Scholar 

  37. MacInnes DA (1915) J Am Chem Soc 37:2301

    Article  CAS  Google Scholar 

  38. Noyes AA, MacInnes DA (1920) J Am Chem Soc 42:239

    Article  CAS  Google Scholar 

  39. MacInnes DA, Yeh YL (1921) J Am Chem Soc 43:239

    Google Scholar 

  40. Harned HS (1916) J Am Chem Soc 38:1986

    Article  CAS  Google Scholar 

  41. Harned HS (1926) J Phys Chem 30:433

    Article  CAS  Google Scholar 

  42. Buck RP, Rondinini S, Covington AK, Baucke FGK, Brett CMA, Camxes MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Pure Appl Chem 74:2169

    Article  CAS  Google Scholar 

  43. Scatchard G (1923) J Am Chem Soc 45:1716

    Article  CAS  Google Scholar 

  44. Guggenheim EA (1930) J Am Chem Soc 52:1315

    Article  CAS  Google Scholar 

  45. Guggenheim EA (1930) J Phys Chem 34:1758

    Article  Google Scholar 

  46. Fraenkel D (2012) J Phys Chem B 116:3603

    Article  CAS  Google Scholar 

  47. Zarubin DP (2011) J Chem Thermodyn 43:1135

    Article  CAS  Google Scholar 

  48. Malatesta F (2000) J Solut Chem 29:771

    Article  CAS  Google Scholar 

  49. Vera JH, Wilczek-Vera G (2012) J Chem Thermodyn 47:442 (continued in the same issue, pp 445, 449, 451)

    Article  CAS  Google Scholar 

  50. Ferse A, Müller HO (2011) J Solid State Electrochem 10:2149

    Article  Google Scholar 

  51. Malatesta F (2011) J Solid State Electrochem 10:2169

    Article  Google Scholar 

  52. Ferse A (2011) J Solid State Electrochem 10:2173

    Article  Google Scholar 

  53. Buizza C, Mussini PR, Mussini T, Rondinini S (1996) J Appl Electrochem 26:337

    Article  CAS  Google Scholar 

  54. Chloupek JB, Danes VZ, Danesova BA (1933) Coll Czech Chem Commun 5:469

    CAS  Google Scholar 

  55. Chloupek JB, Danes VZ, Danesova BA (1933) Coll Czech Chem Commun 5:527

    CAS  Google Scholar 

  56. Sokalski T, Maj-Zurawska M, Hulanicki A, Lewenstam A (1999) Electroanalysis 11:632

    Article  CAS  Google Scholar 

  57. Faverio CL, Mussini PR, Mussini T (1998) Anal Chem 70:2589

    Article  CAS  Google Scholar 

  58. Sakaida H, Kakiuchi T (2011) J Phys Chem B 115:13222

    Article  CAS  Google Scholar 

  59. Shimata M, Sakaida H, Kakiuchi T (2011) Anal Chem 83:164

    Article  Google Scholar 

  60. Fujino Y, Kakiuchi T (2011) J Electroanal Chem 651:61

    Article  CAS  Google Scholar 

  61. Zhang L, Miyazawa T, Kitazumi Y, Kakiuchi T (2012) Anal Chem 84:3461

    Article  CAS  Google Scholar 

  62. Kakiuchi T, Tsujioka N, Kurita S, Iwami Y (2003) Electrochem Commun 5:159

    Article  CAS  Google Scholar 

  63. Oman RF, Camxes MF, Powell KJ, Rajagopalan R, Spitzer P (2007) Pure Appl Chem 79:67, 81

    Article  CAS  Google Scholar 

  64. MacInnes DA, Yeh YL (1921) J Am Chem Soc 43:2563

    Article  CAS  Google Scholar 

  65. Scatchard G (1925) J Am Chem Soc 47:697

    Google Scholar 

  66. Kakiuchi T (2011) J Solid State Electrochem 15:1661

    Article  CAS  Google Scholar 

  67. Lamb AB, Larson AT (1920) J Am Chem Soc 42:229

    Article  CAS  Google Scholar 

  68. Fales HA, Stammelman MJ (1923) J Am Chem Soc 45:1271

    Article  Google Scholar 

  69. Tauber G (2009) Technisches Messen 76:308

    Article  CAS  Google Scholar 

  70. Rusanova MY, Tsirlina GA, Petrii OA (1993) Russ J Electrochem 29:412

    Google Scholar 

  71. Damaskin BB (ed) (1991) Praktikum po elektrokhimii (Lab works on electrochemistry). Vysshaya Shkola, Moscow, pp 5–23

    Google Scholar 

  72. Bates R, Popovych O (1981) Crit Rev Anal Chem 10:247

    Article  CAS  Google Scholar 

  73. Brandariz I, Barriada JL, Taboada-Pan C, de Vicente MES (2001) Electroanalysis 13:1110

    Article  CAS  Google Scholar 

  74. Adachi T, Suzuki H (2011) Sens Actuators B 156:228

    Article  Google Scholar 

  75. Tauber G (2010) Technisches Messen 77:150

    Article  CAS  Google Scholar 

  76. Kadis R, Leito I (2010) Anal Chim Acta 664:129

    Article  CAS  Google Scholar 

  77. Huang H, Wang Q, Cha C-S, Lu J, Zhuang L (2011) Electroanalysis 23:577

    Article  CAS  Google Scholar 

  78. Prideaux EBR (1928) Trans Faraday Soc 24:11

    Article  Google Scholar 

  79. Lvov SN, Macdonald DD (1996) J Electroanal Chem 403:25

    Article  Google Scholar 

  80. Wildgoose GG, Giovanelli D, Lawrence NS, Compton RG (2004) Electroanalysis 16:421

    Article  CAS  Google Scholar 

  81. Macdonald DD, Scott AC, Wentrcek P (1979) J Electrochem Soc 126:1618

    Article  CAS  Google Scholar 

  82. Oh SH, Bahn CB, Hwang IS (2003) J Electrochem Soc 150:E321

    Article  CAS  Google Scholar 

  83. Minh NQ, Redey L (1987) Reference electrodes for molten electrolytes. In: Lovering DG, Gale RJ (eds) Molten salt techniques, vol 3. Plenum, New York, pp 105–287

    Chapter  Google Scholar 

  84. Laity RW (1961) Electrodes in fused salt systems. In: Ives DJG, Janz GJ (eds) Reference electrodes. Theory and practice. Academic, New York, pp 524–606

    Google Scholar 

  85. Snook GA, Best AS, Pandolfo AG, Hollenkamp AF (2006) Electrochem Commun 8:1405

    Article  CAS  Google Scholar 

  86. Torriero AAJ, Howlett PC (2012) Electrochem Commun 16:84

    Article  CAS  Google Scholar 

  87. Rogers EI, Silvester DS, Poole DL, Aldous L, Hardacre C, Compton RG (2008) J Phys Chem C 112:2729

    Article  CAS  Google Scholar 

  88. Lewandowski A, Waligora L, Galinski M (2009) Electroanalysis 21:2221

    Article  CAS  Google Scholar 

  89. Sukardi SK, Zhang J, Burgar I, Horne MD, Hollenkamp AF, MacFarlane DR, Bond AM (2008) Electrochem Commun 12:250

    Article  Google Scholar 

  90. Caruana DJ, McCormack SP (2001) Electrochem Commun 3:675

    Article  CAS  Google Scholar 

  91. Ward KR, Freitag L, Compton RG (2010) J Phys Chem B 114:10763

    Article  CAS  Google Scholar 

  92. Dickson EJF, Freitag L, Compton RG (2010) J Phys Chem B 114:187

    Article  Google Scholar 

  93. Lewenstam A (2011) J Solid State Electrochem 15: 15.

    Article  CAS  Google Scholar 

  94. Jasielec JJ, Filipek R, Szyszkiewicz K, Fausek J, Danielewski M, Lewenstam, A (2012) Comput Mater Sci 63: 75.

    Article  CAS  Google Scholar 

  95. Zhurov K, Dickson EJF, Freitag L, Compton RG (2011) J Phys Chem B 115:6909

    Article  CAS  Google Scholar 

  96. Perram JW, Stiles PJ (2006) Phys Chem Chem Phys 8:4200N10

    Article  Google Scholar 

  97. Koryta J (1984) Electrochim Acta 29:445

    Article  CAS  Google Scholar 

  98. Angst U, Vennesland O, Myrdal R (2009) Mater Struct 42:365

    Article  CAS  Google Scholar 

  99. Lewenstam A (2007) In: Alegret S, Merkoci A (eds) Comprehensive analytical chemistry. Elsevier, Amsterdam, pp 5–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Tsirlina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsirlina, G. (2013). Liquid Junction Potentials. In: Inzelt, G., Lewenstam, A., Scholz, F. (eds) Handbook of Reference Electrodes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36188-3_3

Download citation

Publish with us

Policies and ethics