Skip to main content
Log in

History of the use of nonaqueous media in electrochemistry

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The use of nonaqueous media in electrochemistry is historically reviewed, though the description is based on my personal opinion and is not comprehensive. Here, “media” includes not only organic and inorganic solvents but also ionic liquids and supercritical fluids. The uses in polarography, voltammetry, potentiometry, and related techniques are discussed, but the use in conductimetry is excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Among the aprotic solvents, those having relatively high permittivities (ε r ≥15 or 20) or large dipole moments (μ ≥2.5 D) are usually called “dipolar aprotic solvents.”

  2. The years when dipolar aprotic solvents became commercially available seem as follows: AN 1952, DMF early 1950s, DMSO 1953, PC 1960, sulfolane 1964, and HMPA 1965.

  3. By that time, the radical anion for ESR measurement was usually prepared by the reduction of its parent compound (R) with sodium metal, but the ESR signal obtained was often distorted by ion pair (Na+–R) formation [144]. The electrolytic method by use of tetraalkylammonium salts as supporting electrolyte was free from such ion pair formation.

  4. Recently, Ag/Ag+ electrode in AN is sometimes used as a reference electrode by inserting it into other dipolar aprotic solvents. In this case, the influence of the LJP is much smaller than the case of aqueous reference electrode.

  5. Three cases occur when the sodium metal (Na) is thrown into solvents: (1) the case where Na is dissolved generating hydrogen gas, (2) the case when Na remains unchanged, and (3) the case when Na dissolves forming solvated electrons. The last occurs in ammonia (bp −33.4 °C), methylamine (bp −6 °C), and HMPA (bp 233 °C).

  6. The LJP estimated was 172 mV for DMSO, 174 mV for DMF, 93 mV for AN, and 25 mV for MeOH, with the water side more negative.

  7. All research groups in [6872] assumed the existence of the three components, similar to us, but they considered that all of the three were diffusion potentials, which are related to the ionic transfer across the junction between different solvents. According to our studies, this is not correct as described below, i.e., component (c) is a dipole potential.

  8. The actual value and the theoretical value agree to each other at immiscible junctions, at which the interphase region varies not gradually but abruptly.

  9. The magnitude of component (a) varies with the variation in c l/c 2, and for its variation from 100 mM/1 mM to 1 mM/100 mM, it varied between ca. +40 mV and ca. −40 mV. The actual value of component (b) varies with the species MX: the largest variations were ca. 354 mV at H2O|PC, 254 mV at H2O|AN, and 192 mV at H2O|DMF between MX of NaPh4B and Bu4NCl and 172 mV at H2O/DMSO between MX of Me4NClO4 and LiCl. Component (b) may be the biggest among the three components. Component (c) varies with S1/S2: the value was 122 mV for H2O/DMF and H2O/DMSO, 44 mV for H2O/AN and 30 mV for H2O/PC (at c 1 = c 2 = 1 mM), as estimated under the assumptions that the values of component (c) at H2O/NB and AN/aprotic solvents equal zero.

  10. There are protic ILs too, the cations R+ of which being primary, secondary, and tertiary ammonium cations, 1-alkylimidazolium cations, 1-alkyl-2-alkylimidazolium cations, etc.

Abbreviations

AN:

Acetonitrile

γ-BL:

γ-Butyrolactone

BMIm:

1-Butyl-3-methylimidazolium

BP:

N-Butylpyridinium

DME:

Dropping mercury electrode

DMF:

N,N-Dimethylformamide

DMSO:

Dimethyl sulfoxide

EDLC:

Electrochemical double-layer capacitor

EMIm:

1-Ethyl-3-methylimidazolium

ESR:

Electron spin resonance

ET:

Electron transfer

EtOH:

Ethanol

EV:

Electric vehicle

HEV:

Hybrid electric vehicle

HMDE:

Hanging mercury drop electrode

HMPA:

Hexamethylphosphoric triamide

IL:

Ionic liquid

ISFET:

Ion-selective field effect transistor

ITIES:

Interfaces between two immiscible electrolyte solutions

LJP:

Liquid junction potential

LUMO:

Lowest unoccupied molecular orbital

MeOH:

Methanol

MMIm:

1,3-Dimethylimidazolium

NB:

Nitrobenzene

PC:

Propylene carbonate

scCO2 :

Supercritical carbon dioxide

SCF:

Supercritical fluid

scW:

Supercritical water

UME:

Ultramicroelectrode

W:

Water

References

  1. Vítek V (1935) Collection Czechoslov Chem Communs 7:537–547

    Google Scholar 

  2. Riccoboni L, Popoff P (1949) Gazz Chim Ital 79:573–587

    CAS  Google Scholar 

  3. Peracchio ES, Meloche VW (1938) J Am Chem Soc 60:1770–1775

    Article  CAS  Google Scholar 

  4. Zlotowski I, Kolthoff IM (1942) J Am Chem Soc 64:1297–1301

    Article  CAS  Google Scholar 

  5. Shreve OD, Markham EC (1949) J Am Chem Soc 71:2993–2997

    Article  CAS  Google Scholar 

  6. Lewis WR, Quackenbush FW, DeVries T (1949) Anal Chem 21:762–765

    Article  CAS  Google Scholar 

  7. Wawzonek S, Laitinen HA (1941) J Am Chem Soc 63:2341–2343

    Article  CAS  Google Scholar 

  8. Gentry CHR (1946) Nature 157:479–480

    Article  CAS  Google Scholar 

  9. Parks TD, Hansen KA (1950) Anal Chem 22:1268–1269

    Article  CAS  Google Scholar 

  10. MacGillavry D (1936) Trans Faraday Soc 32:1447–1450

    Article  CAS  Google Scholar 

  11. Bachman GB, Astle MJ (1942) J Am Chem Soc 64:1303–1309

    Article  CAS  Google Scholar 

  12. Laitinen HA, Wawzonek S (1942) J Am Chem Soc 64:1765–1768

    Article  CAS  Google Scholar 

  13. Wawzonek S, Laitinen HA (1942) J Am Chem Soc 64:2365–2368

    Google Scholar 

  14. Pleskov VA (1947) Usp Khim 16:254–278

    CAS  Google Scholar 

  15. Grafov BM, Krishtalik LI, Pleskov YuV (2008) Russ J Electrochem 44:2–6, Viktor Arturovich Pleskov, On Occasion of His Centenary Jubilee

    Article  CAS  Google Scholar 

  16. Pleskov VA (1948) Zh Fiz Khim 22:351–361

    CAS  Google Scholar 

  17. Wawzonek S, Runner ME (1952) J Electrochem Soc 99:457–459

    Article  CAS  Google Scholar 

  18. Arthur P, Lyons H (1952) Anal Chem 24:1422–1425

    Article  CAS  Google Scholar 

  19. Laitinen HA, Nyman CJ (1948) J Am Chem Soc 70:2241–2244, 3002–3008

    Article  CAS  Google Scholar 

  20. Laitinen HA, Shoemaker CE (1950) J Am Chem Soc 72:663–665

    Article  CAS  Google Scholar 

  21. Nachtrieb NH, Steinberg M (1948) J Am Chem Soc 70:2613–2614

    Article  CAS  Google Scholar 

  22. Lyalikov YuS, Karmazin VI (1948) Zavodskaya Lab 14:138–143, 144–148

    CAS  Google Scholar 

  23. Wawzonek S, Blaha EW, Berkey R, Runner ME (1955) J Electrochem Soc 102:235–242

    Article  CAS  Google Scholar 

  24. Wawzonek S, Berkey R, Blaha EW, Runner ME (1956) J Electrochem Soc 103:456–459

    Article  CAS  Google Scholar 

  25. Hoijtink GJ, Van Schooten J, De Boer E, Aalberaberg WIJ (1954) Rec Trav Chim 73:355–375

    Article  CAS  Google Scholar 

  26. Hoijtink GJ (1954) Rec Trav Chim 73:895–909

    Article  CAS  Google Scholar 

  27. Hoijtink GJ (1955) Rec Trav Chim 74:1525–1539

    Article  CAS  Google Scholar 

  28. Austen DEG, Given PH, Ingram DJE, Peover ME (1958) Nature 182:1784–1786

    Article  CAS  Google Scholar 

  29. Izutsu K (2009) Electrochemistry in nonaqueous solutions, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  30. Lund H (1957) Acta Chem Scand 11:491–498, 1323–1330

    Article  CAS  Google Scholar 

  31. Kolthoff IM, Coetzee JF (1957) J Am Chem Soc 79:870–874, 1852–1858

    Article  CAS  Google Scholar 

  32. Coetzee JF, Kolthoff IM (1957) J Am Chem Soc 79:6110–6115

    Article  CAS  Google Scholar 

  33. Gutmann V, Schöber G (1959) Z Anal Chem 171:339–343

    Article  CAS  Google Scholar 

  34. Strehlow H (1952) Z Elektrochem 56:827–833

    CAS  Google Scholar 

  35. Koepp HM, Wendt H, Strehlow H (1960) Z Elektrochem 64:483–491

    CAS  Google Scholar 

  36. Harris WS (1958) Electrochemical studies in cyclic esters, Thesis, Report UCRL 8381

  37. Bruckenstein S, Kolthoff IM (1956) J Am Chem Soc 78:2974–2979

    Article  CAS  Google Scholar 

  38. Bruckenstein S, Kolthoff IM (1957) J Am Chem Soc 79:5915–5921

    Article  CAS  Google Scholar 

  39. Kolthoff IM, Bruckenstein S (1957) J Am Chem Soc 79:1–7

    Article  CAS  Google Scholar 

  40. Maricle DL, Hodgson WG (1965) Anal Chem 37:1562–1565

    Article  CAS  Google Scholar 

  41. Peover ME, White BS (1966) Electrochim Acta 11:1061–1067

    Article  CAS  Google Scholar 

  42. Johnson L, Pool KH, Hamm RE (1967) Anal Chem 39:888–891

    Article  CAS  Google Scholar 

  43. Sawyer DT, Roberts JL Jr (1966) J Electroanal Chem 12:90–101

    CAS  Google Scholar 

  44. Fujinaga T, Izutsu K, Adachi T (1969) Bull Chem Soc Jpn 42:140–145

    Article  CAS  Google Scholar 

  45. Peover ME, White BS (1967) J Electroanal Chem 13:93–99

    Article  CAS  Google Scholar 

  46. Andrieux CP, Hapiot P, Sevéant J-M (1990) Chem Rev 90:723

    Article  CAS  Google Scholar 

  47. Butler JN (1970) Reference electrodes in aprotic organic solvents. In: Delahay P, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 7. Interscience, New York, pp 77–175

    Google Scholar 

  48. Dubois JÉ, Lacaze PC, Ficquelmont AM (1966) CR Acad Sci Ser C 262:181–184

    CAS  Google Scholar 

  49. Headridge JB, Pletcher D, Callingham M (1967) J Chem Soc A 1967:684–685

    Article  Google Scholar 

  50. Bréant M, Bazouin M, Buisson C, Dupin M, Rebattu JM (1968) Bull Soc Chim Fr 1968:5065–5072

    Google Scholar 

  51. Kolthoff IM, Chantooni MK Jr (1963) J Am Chem Soc 85:426–430

    Article  CAS  Google Scholar 

  52. Kolthoff IM, Chantooni MK Jr (1965) J Am Chem Soc 87:1004–1012, 4428–4436

    Article  CAS  Google Scholar 

  53. Kolthoff IM, Chantooni MK Jr (1979) In: Kolthoff IM, Elving PJ (eds) Treatise on analytical chemistry, part 1, vol 2, 2nd edn. Interscience, New York, pp 239–302, 349−384

    Google Scholar 

  54. Jasinski R (1967) High-energy batteries. Plenum, New York

    Google Scholar 

  55. Lund H (2002) J Electrochem Soc 149:S21–S33

    Article  CAS  Google Scholar 

  56. Geiger WE (2007) Organometallics 26:5738–5765

    Article  CAS  Google Scholar 

  57. Besenhard JO, Eichinger G (1976) J Electroanal Chem 68:1–18, 72:1–31

    Article  CAS  Google Scholar 

  58. Ikeda H (1983) In: Gabano J-P (ed) Lithium batteries, chapter 8. Academic, London

    Google Scholar 

  59. Fukuda M, Iijima T (1983) In: Gabano J-P (ed) Lithium batteries, chapter 9. Academic, London

    Google Scholar 

  60. Kanzaki Y, Aoyagui S (1972) J Electroanal Chem 36:297–310

    Article  CAS  Google Scholar 

  61. Izutsu K, Sakura S, Kuroki K, Fujinaga T (1971) J Electroanal Chem 32:A11–A14

    Article  Google Scholar 

  62. Izutsu K, Sakura S, Fujinaga T (1972) Bull Chem Soc Jpn 45:445–450

    Article  CAS  Google Scholar 

  63. Sleere NV (1976) J Chem Educ 53:A12

    Article  Google Scholar 

  64. Van Duyne RP, Reilley CN (1972) Anal Chem 44:142–152, 153–158; 158–169

    Article  Google Scholar 

  65. Evans DH, Lerke SA (1997) Electrochemical studies at reduced temperature. In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry, chapter 16, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  66. Kolthoff IM (1965) J Polarogr Soc 10:22–36

    Google Scholar 

  67. Diggle JW, Parker AJ (1974) Aust J Chem 27:1617–1621

    Article  CAS  Google Scholar 

  68. Alfenaar M, DeLigny CL, Remijnse AG (1967) Rec Trav Chim Pay-Bas 86:986–992

    Article  CAS  Google Scholar 

  69. Cox BG, Parker AJ, Waghorne WE (1973) J Am Chem Soc 95:1010–1014

    Article  CAS  Google Scholar 

  70. Murray RC Jr, Aikens DK (1976) Electrochim Acta 21:1045–1053

    Article  CAS  Google Scholar 

  71. Senanayake G, Muir DM (1987) J Electroanal Chem 237:149–162

    Article  CAS  Google Scholar 

  72. Kahanda C, Popovych O (1994) Aust J Chem 47:921–931, and references therein

    Article  CAS  Google Scholar 

  73. Izutsu K, Nakamura T, Kitano T, Hirasawa C (1978) Bull Chem Soc Jpn 51:783–789

    Article  CAS  Google Scholar 

  74. Izutsu K (1998) Pure Appl Chem 70:1873–1880 (short review)

    Article  CAS  Google Scholar 

  75. Izutsu K, Kobayashi N (2005) J Electroanal Chem 574:197–206

    Article  CAS  Google Scholar 

  76. Izutsu K (2010) Bull Chem Soc Jpn 83:777–781

    Article  CAS  Google Scholar 

  77. Gale RJ, Gilbert B, Osteryoung RA (1978) Inorg Chem 17:2728–2729

    Article  CAS  Google Scholar 

  78. Gale RJ, Osteryoung RA (1979) Inorg Chem 18:1603–1605

    Article  CAS  Google Scholar 

  79. Gale RJ, Gilbert B, Osteryoung RA (1979) Inorg Chem 18:2723–2725

    Article  CAS  Google Scholar 

  80. Robinson J, Osteryoung RA (1979) J Am Chem Soc 101:323–327

    Article  CAS  Google Scholar 

  81. Ohno H (ed) (2005) Electrochemical aspects of ionic liquids. Wiley, New York

    Google Scholar 

  82. Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis, vols. 1 & 2, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  83. Endres F, MacFarlane D, Abbott D (eds) (2008) Electrodeposition from ionic liquids. Wiley-VCH, Weinheim

    Google Scholar 

  84. Gavach C, Henry F (1974) J Electroanal Chem 54:361–370

    Article  CAS  Google Scholar 

  85. Gavach C, D’Epenoux B (1974) J Electroanal Chem 55:59–67

    Article  CAS  Google Scholar 

  86. Gavach C, D’Epenoux B, Henry F (1975) J Electroanal Chem 64:107–115

    Google Scholar 

  87. Koryta J, Vanýsek P, Březina M (1976) J Electroanal Chem 67:263–266

    Article  CAS  Google Scholar 

  88. Koryta J, Vanýsek P, Březina M (1977) J Electroanal Chem 75:211–228

    Article  CAS  Google Scholar 

  89. Samek Z, Mareček V, Koryta J, Khalil MW (1977) J Electroanal Chem 83:393–397

    Article  Google Scholar 

  90. Davies PW, Brink F (1942) Rev Sci Instrum 13:524–533; Clark LC Jr, Wolf R, Granger D, Taylor Z (1953) J Appl Physiol 6:189–193

    Google Scholar 

  91. Clark LC Jr, Wolf R, Granger D, Taylor Z (1953) J Appl Physiol 6:189–193

    Google Scholar 

  92. Amatore C (1995) Electrochemistry at ultramicroelectrodes. In: Rubinstein I (ed) Physical electrochemistry, principles, methods, and applications, chapter 4. Marcel Dekker, New York

    Google Scholar 

  93. Michael AC, Wightman RM (1996) Microelectrodes. In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry, chapter 12, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  94. Penner RM, Herben MJ, Longin TL, Lewis NS (1990) Science 250:1118–1121

    Article  CAS  Google Scholar 

  95. Clegg AD, Rees NV, Klymenko OV, Coles BA, Compton RG (2005) J Electroanal Chem 580:78–86

    Article  CAS  Google Scholar 

  96. Silvestri G, Gambino S, Filardo G, Cuccia C, Guarino E (1981) Angew Chem Int Ed 20:101–102

    Article  Google Scholar 

  97. McDonald AC, Fan FRF, Bard AJ (1986) J Phys Chem 90:196–202

    Article  CAS  Google Scholar 

  98. Flarsheim WM, Tsou YM, Trachtenberg I, Johnston KP, Bard AJ (1986) J Phys Chem 90:3857–3862

    Article  CAS  Google Scholar 

  99. Flarsheim WM, Bard AJ, Johnston KP (1989) J Phys Chem 93:4234–4242

    Article  CAS  Google Scholar 

  100. Liu CY, Snyder SR, Bard AJ (1997) J Phys Chem B 101:1180–1185

    Article  CAS  Google Scholar 

  101. Crooks RM, Fan FRF, Bard AJ (1984) J Am Chem Soc 106:6851–6852

    Article  CAS  Google Scholar 

  102. Crooks RM, Bard AJ (1988) J Electroanal Chem 243:117–131

    Article  CAS  Google Scholar 

  103. Cabrera CR, Garcia E, Bard AJ (1989) J Electroanal Chem 260:457–460

    Article  CAS  Google Scholar 

  104. Niehaus D, Philips M, Michael A, Wightman RM (1989) J Phys Chem 93:6232–6236

    Article  CAS  Google Scholar 

  105. Li J, Prentice G (1997) J Electrochem Soc 144:4284–4288

    Article  CAS  Google Scholar 

  106. Olsen SA, Tallman DE (1994) Anal Chem 66:503–509

    Article  CAS  Google Scholar 

  107. Olsen SA, Tallman DE (1996) Anal Chem 68:2054–2061

  108. Krishtalik LI, Alpatova NM, Ovsyannikova EV (1991) Electrochim Acta 36:435

    Article  CAS  Google Scholar 

  109. Abbott AP, Eardley CA, Harper JC, Hope EG (1998) J Electroanal Chem 457:1–4

    Article  CAS  Google Scholar 

  110. Gritzner G, Kuta J (1984) Pure Appl Chem 56:461–466

    Article  Google Scholar 

  111. Mussini T, Covington AK, Longhi P, Rondinini S (1985) Pure Appl Chem 57:865–876; for new recommendation, see Rondinini S (2002) Anal Bioanal Chem 374:813–816

  112. Coetzee JF (1982) Recommended methods for purification of solvents and tests for impurities. Pergamon, Oxford, For other reports, see Section 10.4 of [29]

    Google Scholar 

  113. Izutsu K (1990) Acid-base dissociation constants in dipolar aprotic solvents, IUPAC Chemical Data Series No. 35. Blackwell Science, Oxford

    Google Scholar 

  114. Yoshino M, Brodd RJ, Kozawa A (eds) (2009) Lithium–ion batteries: science and technologies. Springer, New York

    Google Scholar 

  115. Weaver MJ (1992) Chem Rev 92:463–480

    Article  CAS  Google Scholar 

  116. Galus Z (1995) Electrochemical reactions in nonaqueous and mixed solvents. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, vol 4. VCH, Weinheim, pp 217–295

    Chapter  Google Scholar 

  117. Miller CJ (1995) Heterogeneous electron transfer kinetics at metallic electrodes. In: Rubinstein I (ed) Physical electrochemistry, principles, methods and applications, chapter 2. Marcel Dekker, New York

    Google Scholar 

  118. Echegoyen L, Echegoyen LE (1998) Acc Chem Res 31:593–601

    Article  CAS  Google Scholar 

  119. Echegoyen LE, Herranz MA, Echegoyen L (2006) Fullerenes. In: Scholz F, Pickett CJ (eds) Bard-Stratmann encyclopedia of electrochemistry, vol 7a, inorganic chemistry. Wiley-VCH, Weinheim, pp 145–201

    Google Scholar 

  120. Oyama M, Nozaki K, Nagaoka T, Okazaki S (1990) Bull Chem Soc Jpn 63:33–41

    Article  CAS  Google Scholar 

  121. Oyama M, Higuchi T, Okazaki S (2000) Electrochem Commun 2:675–678

    Article  CAS  Google Scholar 

  122. Izutsu K, Nakamura T, Hiraoka S (1993) Chem Lett 1843–1846

  123. Izutsu K, Ohmaki M (1995) Talanta 43:643–648

    Article  Google Scholar 

  124. Wilkes JS, Zaworotko MJ (1992) J Chem Soc, Chem Commun 1992:965–967

    Google Scholar 

  125. Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Chem Rev 107:2183–2206

    Article  CAS  Google Scholar 

  126. Xu K (2004) Chem Rev 104:4303–4418

    Article  CAS  Google Scholar 

  127. Conway BE (1999) Electrochemical superconductors, scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  128. Ue M (2007) Electrochemistry 75:565–572

    CAS  Google Scholar 

  129. Ue M (2005) Chapter 17 of [81]

  130. Amatucci GG, Badway F, Pasquier AD, Zhang T (2001) J Electrochem Soc 148:A930–A939

    Article  CAS  Google Scholar 

  131. Yoshio M, Nakamura H, Wang H (2006) Electrochem Solid-State Lett 9:A561–A563

    Article  CAS  Google Scholar 

  132. Yoshizumi A, Uehara A, Kasuno M, Kitatsuji Y, Yoshida Z, Kihara S (2005) J Electroanal Chem 581:275–283

    Article  CAS  Google Scholar 

  133. Kakiuch T (2007) Anal Chem 79:6442–6449

    Article  Google Scholar 

  134. Kakiuchi T (2008) Anal Sci 24:1221–1230

    Article  CAS  Google Scholar 

  135. Kakiuchi T, Yoshimatsu T (2006) Bull Chem Soc Jpn 79:1017–1024

    Article  CAS  Google Scholar 

  136. Kakiuchi T, Yoshimatsu T, Nishi N (2007) Anal Chem 79:7187–7191

    Article  CAS  Google Scholar 

  137. Scholz F, Komorsky-Lovric S, Lovric M (2000) Electrochem Commun 2:112–118

    Article  CAS  Google Scholar 

  138. Banks CE, Davies TJ, Evans RG, Hignett G, Wain AJ, Lawrence NS, Wadhawan JD, Marken F, Compton RG (2003) Phys Chem Chem Phys 5:4053–4069

    Article  CAS  Google Scholar 

  139. Scholz F, Gulaboski R (2005) ChemPhysChem 6:16–28

    Article  CAS  Google Scholar 

  140. Bak E, Donten M, Stojek Z (2007) J Electroanal Chem 600:45–53

    Article  CAS  Google Scholar 

  141. Donten M, Bak E, Gniadek M, Stojek Z, Scholz F (2008) Electrochim Acta 53:5608–5614

    Article  CAS  Google Scholar 

  142. Anastas PT (2002) Green chemistry as applied to solvents. In: Abraham MA, Moens L (eds) Clean solvents: alternative media for chemical reactions and processing, chapter 1. Oxford Univ Press, Oxford

    Google Scholar 

  143. LeSuer RJ, Geiger WE (2006) J Electroanal Chem 594:20–26

    Article  CAS  Google Scholar 

  144. Ovenall DW, Whiffen DH (1958) Electron spin resonance measurements on some organsodium complexes, Chemical Society Symposium, Electron and Nuclear Magnetic Resonance, Bristol

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Izutsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izutsu, K. History of the use of nonaqueous media in electrochemistry. J Solid State Electrochem 15, 1719–1731 (2011). https://doi.org/10.1007/s10008-010-1246-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1246-y

Keywords

Navigation