Skip to main content

Age-Related Physiological Changes of the Bone Marrow and Immune System

  • Chapter
  • First Online:
Geriatric Imaging

Abstract

Osteoporotic research has quite rightly focused on the hard tissue component of bone as this is the component that ultimately gives bone its strength. The marrow cavity nevertheless forms a major constituent of bone and has received relatively less attention regarding osteoporotic research. The bone marrow is one of the most voluminous and also metabolically active organs in the human body, more so than mineralized bone tissue, that is involved in perfusion or nutrition of adjacent bone tissue. Our knowledge of bone marrow metabolism has been greatly assisted by MRI and PET-CT technology. One could argue that current densitometry techniques and even high-resolution imaging techniques are diagnosing osteoporosis too late. By the time osteoporosis is recognized by densitometric techniques, bone strength is already significantly impaired. Also, predicting which subjects with normal bone density or low bone mass will progress to bone loss and impairment of bone strength is not accurate enough to select those who would benefit from osteoporotic treatment. In addition, osteoporosis is associated with several other conditions such as steroid use, atherosclerosis, vascular calcification, diabetes, dyslipidemia, and Alzheimer disease though the pathogenetic mechanisms linking these diseases to osteoporosis are not fully understood. One can appreciate, given the numerous interactions between the bone marrow and mineralized bone, that the answers to these questions may be found in study of the bone marrow.

Study of any tissue initially requires an appreciation of the normal structure and microenvironment of this tissue as well as the physiological age-related changes that occur. For the first time, MRI and, to a lesser extent, PET imaging have allowed noninvasive study of the bone marrow on a large scale. This chapter addresses physiological age-related changes that occur in the bone marrow and how these changes may influence changes in the adjacent hard tissue of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

BMD:

Bone mineral density

BMI:

Body mass index

CT:

Computed tomography

E max :

Maximal signal intensity enhancement

E slope :

Enhancement slope

FDG:

18F-flurodeoxyglucose

K el :

Arterial input-function elimination ­constant

K ex :

Arterial input-function capillary ­exchange constant

K trans :

Arterial input-function transport constant

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

References

  • Basu S, Houseni M, Bural G, Chamroonat W, Udupa J, Mishra S, Alavi A (2007) Magnetic resonance imaging based bone marrow segmentation for quantitative calculation of pure red marrow metabolism using 2-deoxy-2-[F-18] fluoro-D-glucose-positron emission tomography: a novel application with significant implications for combined structure-function approach. Mol Imaging Biol 9:361–365

    Article  PubMed  Google Scholar 

  • Baur A, Stabler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26:414–418

    Article  PubMed  CAS  Google Scholar 

  • Bernard C, Liney G, Manton D, Turnbull L, Langton C (2008) Comparison of fat quantification methods: a phantom study at 3.0 T. J Magn Reson Imaging 27:192–197

    Article  PubMed  Google Scholar 

  • Blebea JS, Houseni M, Torigian DA, Fan C, Mavi A, Zhuge Y, Iwanaga T, Mishra S, Udupa J, Zhuang J, Gopal R, Alavi A (2007) Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Semin Nucl Med 37:185–194

    Article  PubMed  Google Scholar 

  • Blouin K, Boivin A, Tchernof A (2008) Androgens and body fat distribution. J Steroid Biochem Mol Biol 108:272–280

    Article  PubMed  CAS  Google Scholar 

  • Bredella MA, Torriani M, Ghomi RH et al (2011) Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity 19:49–53

    Article  PubMed  CAS  Google Scholar 

  • Chen WT, Shih TT (2006) Correlation between the bone marrow blood perfusion and lipid water content on the lumbar spine in female subjects. J Magn Reson Imaging 24:176–181

    Article  PubMed  Google Scholar 

  • Chen WT, Shih T, Chen RC et al (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220:213–218

    PubMed  CAS  Google Scholar 

  • Chen WT, Ting-Fang Shih T, Hu CJ, Chen RC, Tu HY (2004) Relationship between vertebral bone marrow blood perfusion and common carotid intima-media thickness in aging adults. J Magn Reson Imaging 20:811–816

    Article  PubMed  Google Scholar 

  • Choyke PL, Dwyer AJ, Knopp MV (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 17:509–520

    Article  PubMed  Google Scholar 

  • De Bisschop E, Luypaert R, Louis O, Osteaux M (1993) Fat fraction of lumbar bone marrow using in vivo proton nuclear magnetic resonance spectroscopy. Bone 14:133–136

    Article  PubMed  Google Scholar 

  • Demmler K, Otte P, Bartl R et al (1983) Osteopenia, marrow atrophy and capillary circulation: comparative studies of the human iliac crest and 1st lumbar vertebra. Z Orthop 121:223–227

    Article  PubMed  CAS  Google Scholar 

  • Donahue MJ, Lu H, Jones CK, Pekar JJ, van Zijl PC (2006) An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR Biomed 19:1043–1054

    Article  PubMed  Google Scholar 

  • Duda SH, Laniado M, Schick F, Strayle M, Claussen CD (1995) Normal bone marrow in the sacrum of young adults: differences between the sexes seen on chemical-shift MR imaging. AJR Am J Roentgenol 164:935–940

    Article  PubMed  CAS  Google Scholar 

  • Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94:275–291

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Hernandez-Pampaloni M, Houseni M, Chamroonrat W, Basu S, Kumar R, Dadparvar S, Torigian DA, Alavi A (2007) Age-related changes in the metabolic activity and distribution of the red marrow as demonstrated by -deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography. Imaging Biol 9:300–307

    Article  Google Scholar 

  • Gameiro CM, Romão F, Castelo-Branco C (2010) Menopause and aging: changes in the immune system – a review. Maturitas 67:316–320

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Zeng S, Sun BL, Fan HM, Han LH (1987) Menstrual blood loss and hematologic indices in healthy Chinese women. J Reprod Med 32:822–826

    PubMed  CAS  Google Scholar 

  • Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, Leung PC (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Kwok TC, Ahuja AT, Leung PC (2008) Compromised bone perfusion in osteoporosis. J Bone Miner Res 23:1068–1075

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Chow SK, Leung JC, Leung PC (2009) Reproducibility of MR perfusion and (1)H spectroscopy of bone marrow. J Magn Reson Imaging 29:1438–1442

    Article  PubMed  Google Scholar 

  • Griffith JF, Wang YX, Zhou H, Kwong WH, Wong WT, Sun YL, Huang Y, Yeung DK, Qin L, Ahuja AT (2010) Reduced bone perfusion in osteoporosis: likely causes in an ovariectomy rat model. Radiology 254:739–746

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC (2012). Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 36:225–230

    Google Scholar 

  • Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36:1978–1991

    Article  PubMed  Google Scholar 

  • Hartsock RJ, Smith EB, Petty CS (1965) Normal variations with aging of the amount of hematopoetic tissue in bone marrow from the anterior iliac crest. A study made from 177 cases of sudden death examined by necropsy. Am J Clin Pathol 43:326–331

    PubMed  CAS  Google Scholar 

  • Hillengass J, Stieltjes B, Bäuerle T, McClanahan F, Heiss C, Hielscher T, Wagner-Gund B, Habetler V, Goldschmidt H, Schlemmer HP, Delorme S, Zechmann CM (2011) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging of bone marrow in healthy individuals. Acta Radiol 52:324–330

    Article  PubMed  Google Scholar 

  • Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, part 1. Skeletal Radiol 36:913–920

    Article  PubMed  Google Scholar 

  • Ishijima H, Ishizaka H, Horikoshi H, Sakurai M (1996) Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex. AJR Am J Roentgenol 167:355–358

    Article  PubMed  CAS  Google Scholar 

  • Jung CM, Kugel H, Schulte O, Heindel W (2000) Proton-MR spectroscopy of the spinal bone marrow. An analysis of physiological signal behavior. Radiologe 40:694–699

    Article  PubMed  CAS  Google Scholar 

  • Kahn D, Weiner GJ, Ben-Haim S, Ponto LL, Madsen MT, Bushnell DL, Watkins GL, Argenyi EA, Hichwa RD (1994) Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. Blood 83(4):958–963. Erratum in: Blood 84:3602

    Google Scholar 

  • Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 40:665–681

    Article  PubMed  Google Scholar 

  • Knopp EA, Cowper SE (2008) Nephrogenic systemic fibrosis: early recognition and treatment. Semin Dial 21:123–128

    Article  PubMed  Google Scholar 

  • Knothe Tate ML, Niederer P, Knothe U (1998) In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22:107–117

    Article  PubMed  CAS  Google Scholar 

  • Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268

    Article  PubMed  CAS  Google Scholar 

  • Lehnert A, Machann J, Helms G, Claussen CD, Schick F (2004) Diffusion characteristics of large molecules assessed by proton MRS on a whole-body MR system. Magn Reson Imaging 22:39–46

    Article  PubMed  CAS  Google Scholar 

  • Lichtman MA (1981) The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol 9:391–410

    PubMed  CAS  Google Scholar 

  • Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM (2007) Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J Magn Reson Imaging 26:787–793

    Article  PubMed  Google Scholar 

  • Loftus WK, Chow LT, Metreweli C (1999) Sonographic measurement of splenic length: correlation with measurement at autopsy. J Clin Ultrasound 27:71–74

    Article  PubMed  CAS  Google Scholar 

  • Mills R (1973) Self-diffusion in normal and heavy water in the range 1-45 deg. J Phys Chem 77:685–688

    Article  CAS  Google Scholar 

  • Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229:703–709

    Article  PubMed  Google Scholar 

  • Nonomura Y, Yasumoto M, Yoshimura R, Haraguchi K, Ito S, Akashi T, Ohashi I (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760

    Article  PubMed  CAS  Google Scholar 

  • Piert M, Zittel TT, Becker GA, Jahn M, Stahlschmidt A, Maier G, Machulla H-J, Bares R (2001) Assessment of porcine bone metabolism by dynamic 18F-fluoride PET: correlation with bone histomorphometry. J Nucl Med 42:1091–1100

    PubMed  CAS  Google Scholar 

  • Poulton TB, Murphy WD, Duerk JL, Chapek CC, Feiglin DH (1993) Bone marrow reconversion in adults who are smokers: MR imaging findings. Am J Roentgenol 161:1217–1221

    Article  CAS  Google Scholar 

  • Savvopoulou V, Maris TG, Vlahos L, Moulopoulos LA (2008) Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI). Eur Radiol 18:1876–1883

    Article  PubMed  Google Scholar 

  • Schellinger D, Lin SC, Fertikh D et al (2000) Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy-initial experience. Radiology 215:910–916

    PubMed  CAS  Google Scholar 

  • Shih TT, Chang CJ, Hsu CY, Wei SY, Su KC, Chung HW (2004) Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine (Phila Pa 1976) 29:2844–2850

    Article  Google Scholar 

  • Soppela P, Nieminen M (2001) The effect of wintertime undernutrition on the fatty acid composition of leg bone marrow fats in reindeer (Rangifer tarandus tarandus L.). Comp Biochem Physiol B Biochem Mol Biol 128:63–72

    Article  PubMed  CAS  Google Scholar 

  • Steiner RM, Mitchell DG, Rao VM, Schweitzer ME (1993) Magnetic resonance imaging of diffuse bone marrow disease. Radiol Clin North Am 31:383–409

    PubMed  CAS  Google Scholar 

  • Toth MJ, Tchernof A, Sites CK, Poehlman ET (2000) Menopause-related changes in body fat distribution. Ann N Y Acad Sci 904:502–506

    Article  PubMed  CAS  Google Scholar 

  • Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34:548–565

    Article  PubMed  Google Scholar 

  • Ward R, Caruthers S, Yablon C, Blake M, DiMasi M, Eustace S (2000) Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. AJR Am J Roentgenol 174:731–734

    Article  PubMed  CAS  Google Scholar 

  • Weiss LP, Wislocki GB (1956) Seasonal variations in hematopoiesis in the dermal bones of the nine-banded armadillo. Anat Rec 126:143–163

    Article  PubMed  CAS  Google Scholar 

  • Yeung DK, Wong SY, Griffith JF, Lau EM (2004) Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging 19:222–228

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Griffith MB, BAO, BCh, MRCP, FRCR, FHKAM (radiology) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Griffith, J.F. (2013). Age-Related Physiological Changes of the Bone Marrow and Immune System. In: Guglielmi, G., Peh, W., Guermazi, A. (eds) Geriatric Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35579-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35579-0_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35578-3

  • Online ISBN: 978-3-642-35579-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics