Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 871 Accesses

Abstract

In the last two decades there have been a lot of efforts to improve mechanical properties of polypropylene [1] via compounding it with layered silicates (clay) [2–7]. For instance, enhancements of storage modulus [8–10], Young’s modulus [11, 12], impact strength [13, 14], and tensile strength [15, 16] have been reported. Layered silicates can be mixed with polypropylene in the melt state using conventional polymer processing machinery [3, 4, 6, 16]. Nevertheless, incompatibility of layered silicates with hydrophobic polypropylene chains provokes problems with dispersing them inside the matrix [17, 18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strain-heterogeneity and the effects of compatibilizer are explored further in the discussion of MFC materials in Chap. 6.

References

  1. Varga, J.: Crystallization, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis, J. (ed.) Polypropylene: Structure, Blends and Composites, pp. 51–106. Chapman and Hall, London (1995)

    Google Scholar 

  2. Kurokawa, Y., Yasuda, H., Oya, A.: Preparation of a nanocomposite of polypropylene and smectite. J. Mater. Sci. Lett. 15, 1481–1483 (1996)

    Article  CAS  Google Scholar 

  3. Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29–35 (1996)

    Article  CAS  Google Scholar 

  4. Manias, E., Touny, A., Wu, L., Strawhecker, K.E., Lu, B., Chung, T.C.: Polypropylene/Montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)

    Article  CAS  Google Scholar 

  5. Ray, S.S., Okamoto, M.: Polymer/Layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  CAS  Google Scholar 

  6. Solomon, M.J., Somwangthanaroj, A.: Intercalated polypropylene nanocomposites. In: Schwarz, J.A., Contescu, C.I., Putyera, K. (eds.) Dekker Encyclopedia of Nanoscience and Nanotechnology, pp. 1483–1490. Marcel Dekker, Inc., New York (2004)

    Google Scholar 

  7. Ke, Y.C., Stroeve, P.: Polymer-Layered Silicates and Silica Nanocomposites, 1st edn. Elsevier, Amsterdam (2005)

    Google Scholar 

  8. Ma, J., Qi, Z., Hu, Y.: Synthesis and characterization of polypropylene/clay nanocomposites. J. Appl. Polym. Sci. 82, 3611–3617 (2001)

    Article  CAS  Google Scholar 

  9. Kawasumi, M., Hasegawa, N., Kato, M., Usuki, A., Okada, A.: Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30, 6333–6338 (1997)

    Article  CAS  Google Scholar 

  10. Hambir, S., Bulakh, N., Kodgire, P., Kalgaonkar, R., Jog, J.P.: PP/Clay nanocomposites: a study of crystallization and dynamic mechanical behavior. J. Polym. Sci. Part B: Polym. Phys. 39, 446–450 (2001)

    Article  CAS  Google Scholar 

  11. Vu, Y.T., Rajan, G.S., Mark, J.E.: Reinforcement of elastomeric polypropylene by nanoclay fillers. Polym. Int. 53, 1071–1077 (2004)

    Article  CAS  Google Scholar 

  12. Chen, L., Wong, S.C., Liu, T., Lu, X., He, C.: Deformation mechanisms of nanoclay-reinforced maleic anhydride-modified polypropylene. J. Polym. Sci. Part B: Polym. Phys. 49, 1561–1564 (2000)

    Google Scholar 

  13. Zhang, Q., Fu, Q., Jiang, L., Lei, Y.: Preparation and properties of polypropylene/montmorillonite layered nanocomposites. Polym. Int. 49, 1561–1564 (2000)

    Article  CAS  Google Scholar 

  14. Zhu, S., Chen, J., Zuo, Y., Li, H., Cao, Y.: Montmorillonite/Polypropylene nanocomposites: mechanical properties, crystallization and rheological behaviors. Appl. Clay Sci. 52, 171–178 (2011)

    Article  CAS  Google Scholar 

  15. Prachum, Y., Strauss, R.H.A., Zuo, Y., Kiatkamjornwong, S.: The physical and mechanical properties of beta-nucleated polypropylene/montmorillonite nanocomposites. J. Appl. Polym. Sci. 122, 1066–1076 (2011)

    Article  CAS  Google Scholar 

  16. Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)

    Article  CAS  Google Scholar 

  17. LeBaron, P.C., Wang, Z., Pinnavaia, T.J.: Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 15, 11–19 (1999)

    Article  CAS  Google Scholar 

  18. Chrissopoulou, K., Anastasiadis, S.H.: Polyolefin/Layered silicate nanocomposites with functional compatibilizers. Eur. Polym. J. 47, 600–613 (2011)

    Article  CAS  Google Scholar 

  19. Reichert, P., Nitz, H., Klinke, S., Brandsch, R., Thomann, R., Mülhaupt, R.: Poly(propylene)/organoclay nanocomposite formation: influence of compatibilizer functionality and organoclay modification. Macromol. Mater. Eng. 275, 8–17 (2000)

    Article  CAS  Google Scholar 

  20. Spencer, M.W., Hunter, D.L., Knesek, B.W., Paul, D.R.: Morphology and properties of polypropylene nanocomposites based on a silanized organoclay. Polymer 52, 5369–5377 (2011)

    Article  CAS  Google Scholar 

  21. Rohlmann, C.O., Horst, M.F., Quinzani, L.M., Failla, M.D.: Comparative analysis of nanocomposites based on polypropylene and different montmorillonites. Eur. Polym. J. 44, 2749–2760 (2008)

    Article  CAS  Google Scholar 

  22. Lertwimolnun, W., Vergnes, B.: Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 46, 3462–3471 (2005)

    Article  CAS  Google Scholar 

  23. Ratnayake, U.N., Haworth, B.: Polypropylene/Clay nanocomposites: influence of low molecular weight polar additives on intercalation and exfoliation behavior. Polym. Eng. Sci. 46, 1008–1015 (2006)

    Article  CAS  Google Scholar 

  24. Lee, E.C., Mielewski, D.F., Baird, R.J.: Exfoliation and dispersion enhancement in polypropylene nanocomposites by in-situ melt phase ultrasonication. Polym. Eng. Sci. 44, 1773–1782 (2004)

    Article  CAS  Google Scholar 

  25. Chen, Y.H., Zhong, G.J., Wang, Y., Li, Z.M., Li, L.: Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and \(\beta \)-nucleating agent on \(\beta \)-form nucleation. Macromolecules 42, 4343–4348 (2009)

    Article  CAS  Google Scholar 

  26. Zhao, L., Li, J., Guo, S., Du, Q.: Ultrasonic oscillations induced morphology and property development of polypropylene/montmorillonite nanocomposites. Polymer 47, 2460–2469 (2006)

    Article  CAS  Google Scholar 

  27. Morgan, A.B., Gilman, J.W.: Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-Ray diffraction: a comparative study. J. Appl. Polym. Sci. 87, 1329–1338 (2003)

    Article  CAS  Google Scholar 

  28. Vermogen, A., Masenelli-Varlot, K., Séguéla, R., Duchet-Rumeau, J., Boucard, S., Prele, P.: Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules 38, 9661–9669 (2005)

    Article  CAS  Google Scholar 

  29. Martín, Z., Jiménez, I., Ángeles Gómez, M., Ade, H., Kilcoyne, D.A., Hernádez-Cruz, D.: Spectromicroscopy study of intercalation and exfoliation in polypropylene/montmorillonite nanocomposites. J. Phys. Chem. B 113, 11160–11165 (2009)

    Article  Google Scholar 

  30. Ma, J., Zhang, S., Qi, Z., Li, G., Hu, Y.: Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J. Appl. Polym. Sci. 83, 1978–1985 (2001)

    Article  Google Scholar 

  31. Xu, W., Ge, M., He, P.: Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 40, 408–414 (2002)

    Article  CAS  Google Scholar 

  32. Pozsgay, A., Fráter, T., Papp, L., Sajó, I., Pukánszky, B.: Nucleating effect of montmorillonite nanoparticles in polypropylene. J. Macromol. Sci. Part B: Physics 41, 1249–1265 (2002)

    Article  Google Scholar 

  33. Li, J., Zhou, C., Gang, W.: Study on nonisothermal crystallization of maleic anhydride grafted polypropylene/montmorillonite nanocomposite. Polym. Test. 22, 217–223 (2003)

    Article  Google Scholar 

  34. Xu, W., Guodong, L., Zhai, H., Tang, S., Hang, G., Pan, W.-P.: Preparation and crystallization behaviour of PP/PP-g-MAH/Org-MMT nanocomposite. Eur. Polym. J. 39, 1467–1474 (2003)

    Article  CAS  Google Scholar 

  35. Kim, B., Lee, S.H., Lee, D., Ha, B., Park, J., Char, K.: Crystallization kinetics of maleated polypropylene/clay hybrids. Ind. Eng. Chem. Res. 43, 6082–6089 (2004)

    Article  CAS  Google Scholar 

  36. Nowacki, R., Monasse, B., Piorkowska, E., Galeski, A., Haudin, J.M.: Spherulite nucleation in isotactic polypropylene based nanocomposites with montmorillonite under shear. Polymer 45, 4877–4892 (2004)

    Article  CAS  Google Scholar 

  37. Ding, C., Jia, D., He, H., Guo, B., Hong, H.: How organo-montmorillonite truly affects the structure and properties of polypropylene. Polym. Test. 24, 94–100 (2005)

    Article  CAS  Google Scholar 

  38. Rozanski, A., Monasse, B., Szkudlarek, E., Pawlak, A., Piorkowska, E., Galeski, A., Haudin, J.M.: Shear-induced crystallization of isotactic polypropylene based nanocomposites with montmorillonite. Eur. Polym. J. 45, 88–101 (2009)

    Article  CAS  Google Scholar 

  39. Stribeck, N., Nöchel, U., Funari, S.S., Schubert, T.: Tensile tests of polypropylene monitored by SAXS. Comparing the stretch-hold technique to the dynamic technique. J. Polym. Sci. Polym. Phys. 46, 721–726 (2008)

    Article  CAS  Google Scholar 

  40. Brown, H.R., Kramer, E.J.: Craze microstructure from Small-Angle X-ray Scattering (SAXS). J. Macromol. Sci. Part B: Physics 19, 487–522 (1981)

    Article  Google Scholar 

  41. Brown, H.R., Kramer, E.J., Bubeck, R.A.: Effect of deformation ratio on fibril deformation in fatigue of polystyrene. J. Mater. Sci. 23, 248–252 (1988)

    Article  CAS  Google Scholar 

  42. Karl, A., Cunis, S., Gehrke, R., Krosigk, G.V., Lode, U., Luzinov, I., Minko, S., Pomper, T., Senkovsky, V., Voronov, A., Wilke, W.: Investigation of failure mechanisms in polymer composites by simultaneous measurement of ultra-small-angle scattering and acoustic emission during the deformation. I. Method. J. Macromol. Sci. Part B: Phys. 38, 901–912 (1999)

    Article  Google Scholar 

  43. Pomper, T., Lode, U., Karl, A., Krosigk, G.V., Minko, S., Luzinov, I., Senkovsky, V., Voronov, A., Wilke, W.: Investigation of craze development using small-angle X-ray scattering of synchrotron radiation. J. Macromol. Sci. Phys. B38, 869–883 (1999)

    Article  CAS  Google Scholar 

  44. Kobayashi, H., Shioya, M., Tanaka, T., Irisawa, T.: Synchrotron radiation small-angle X-ray scattering study on fracture process of carbon nanotube/poly(ethylene terephthalate) composite films. Compos. Sci. Technol. 67, 3209–3218 (2007)

    Article  CAS  Google Scholar 

  45. Fischer, S., Diesner, T., Rieger, B., Marti, O.: Simulating and evaluating small-angle X-ray scattering of micro-voids in polypropylene during mechanical deformation. J. Appl. Cryst. 43, 603–610 (2010)

    Article  CAS  Google Scholar 

  46. Statton, W.O.: Microvoids in fibers as studied by small-angle scattering of X-rays. J. Polym. Sci. 58, 205–220 (1962)

    Article  CAS  Google Scholar 

  47. Stribeck, N., Nöchel, U., Funari, S.S., Schubert, T., Timmann, A.: Nanostructure evolution in polypropylene during mechanical testing. Macromol. Chem. Phys. 209, 1992–2002 (2008)

    Article  CAS  Google Scholar 

  48. Peterlin, A.: Morphology and properties of crystalline polymers with fiber structure. Text. Res. J. 42, 20–30 (1972)

    Article  CAS  Google Scholar 

  49. Hugel, T., Strobl, G., Thomann, R.: Building lamellae from blocks: the pathway followed in the formation of crystallites of syndiotactic polypropylene. Acta Polym. 50, 214–217 (1999)

    Article  CAS  Google Scholar 

  50. Strobl, G.: Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog. Polym. Sci. 31, 398–442 (2006)

    Article  CAS  Google Scholar 

  51. Stribeck, N., Androsch, R., Funari, S.S.: Nanostructure evolution of homogeneous poly(ethylene-co-1-octene) as a function of strain. Macromol. Chem. Phys. 204, 1202–1216 (2003)

    Article  CAS  Google Scholar 

  52. Fronk, W., Wilke, W.: SAXS of partially oriented polymers: model calculations with monoclinic macrolattice. Colloid Polym. Sci. 263, 97–108 (1985)

    Article  CAS  Google Scholar 

  53. Fakirov, S., Samokovlijsky, O., Stribeck, N., Apostolov, A.A., Denchev, Z., Sapoundjieva, D., Evstatiev, M., Meyer, A., Stamm, M.: Nanostructure deformation behavior in poly(ethylene terephthalate)/ polyethylene drawn blend as revealed by small-angle scattering of synchrotron X radiation. Macromolecules 34, 3314–3317 (2001)

    Article  CAS  Google Scholar 

  54. Androsch, R., Stribeck, N., Lüpke, T., Funari, S.: Investigation of the deformation of homogeneous poly(ethylene-co-1-octene) by wide- and small-angle X-ray scattering using synchrotron radiation. J. Polym. Sci. Part B: Polym. Phys. 40, 1919–1930 (2002)

    Article  CAS  Google Scholar 

  55. Humbert, S., Lame, O., Chenal, J.-M., Rochas, C., Vigier, G.: Small strain behavior of polyethylene: in situ SAXS measurements. J. Polym. Sci. Part B: Polym. Phys. 48, 1535–1542 (2010)

    Article  CAS  Google Scholar 

  56. Moonen, J.A., Roovers, W.A., Meier, R.J., Kip, B.J.: Crystal and molecular deformation in strained high-performance polyethylene fibers studied by wide-angle X-ray scattering and Raman spectroscopy. J. Polym. Sci. Part B: Polym. Phys. 30, 361–372 (1992)

    Article  CAS  Google Scholar 

  57. Peterlin, A.: Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 6, 490–508 (1971)

    Article  CAS  Google Scholar 

  58. Porod, G.: Application and results of small-angle X-ray scattering from solid polymers (German). Fortschr. Hochpolym.-Forsch 2, 363–400 (1961)

    Article  CAS  Google Scholar 

  59. Wilkes, G.L., Zhou, H.: Orientation-dependent mechanical properties and deformation morphologies for uniaxially melt-extruded high-density polyethylene films having an initial stacked lamellar texture. J. Mater. Sci. 33, 287–303 (1998)

    Article  Google Scholar 

  60. Butler, M.F., Donald, A.M.: A real-time simultaneous small- and wide-angle X-ray scattering study of in situ polyethylene deformation at elevated temperatures. Macromolecules 31, 6234–6249 (1998)

    Article  CAS  Google Scholar 

  61. Wu, J., Schultz, J.M., Yeh, F., Hsiao, B.S., Chu, B.: In-situ simultaneous synchrotron small- and wide-angle X-ray scattering measurement of poly(vinylidene fluoride) fibers under deformation. Macromolecules 33, 1765–1777 (2000)

    Article  CAS  Google Scholar 

  62. Barbi, V., Funari, S.S., Gehrke, R., Scharnagl, N., Stribeck, N.: SAXS and the gas transport in polyether-block-polyamide copolymer membranes. Macromolecules 38, 749–758 (2003)

    Article  Google Scholar 

  63. Kawakami, D., Ran, S., Burger, C., Avila-Orta, C., Sics, I., Chu, B., Hsiao, B.S., Kikutani, T.: Superstructure evolution in poly(ethylene terephthalate) during uniaxial deformation above glass transition temperature. Macromolecules 39, 2909–2920 (2006)

    Article  CAS  Google Scholar 

  64. Miyazaki, T., Hoshiko, A., Akasaka, M., Shintani, T., Sakurai, S.: SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water. Macromolecules 39, 2921–2929 (2006)

    Article  CAS  Google Scholar 

  65. Ibanes, C., David, C., de Boissieu, M., Séguéla, R., Epicier, T., Robert, G.: Structure and mechanical behavior of nylon-6 fibers filled with organic and mineral nanoparticles. I. Microstructure of spun and drawn fibers. J. Polym. Sci. Part B: Polym. Phys. 42, 3876–3892 (2004)

    Article  CAS  Google Scholar 

  66. Šmit, I., Musil, V., Švab, I.: Effects of EPDM and wollastonite on structure of isotactic polypropylene blends and composites. J. Appl. Polym. Sci. 91, 4072–4081 (2004)

    Article  Google Scholar 

  67. Todorov, L.V., Viana, J.C.: Characterization of PET nanocomposites produced by different melt-based production methods. J. Appl. Polym. Sci. 106, 1659–1669 (2007)

    Article  CAS  Google Scholar 

  68. Deshmane, C., Yuan, Q., Perkins, R.S., Misra, R.D.K.: On striking variation in impact toughness of polyethylene-clay and polypropylene-clay nanocomposite systems: the effect of clay-polymer interaction. Mater. Sci. Eng. A 458, 150–157 (2007)

    Article  Google Scholar 

  69. Drozdov, A.D., Christiansen, J.D.: Cyclic viscoplasticity of high-density polyethylene/montmorillonite clay nanocomposite. Eur. Polym. J. 43, 10–25 (2007)

    Article  CAS  Google Scholar 

  70. Blomenhofer, M., Ganzleben, S., Hanft, D., Schmidt, H.-W., Kristiansen, M., Smith, P., Stoll, K., Mäder, D., Hoffmann, K.: “Designer” nucleating agents for polypropylene. Macromolecules 38, 3688–3695 (2005)

    Article  CAS  Google Scholar 

  71. Kristiansen, P.M., Gress, A., Hanft, D., Schmidt, H.-W.: Phase behavior, nucleation and optical properties of the binary system isotactic polypropylene/N, N\(^{\prime }\), N\(^{\prime \prime }\)-tris-isopentyl-1,3,5-benzene-tricarboxamide. Polymer 47, 249–253 (2006)

    Article  CAS  Google Scholar 

  72. Libster, D., Aserin, A., Garti, N.: Advanced nucleating agents for polypropylene. Polym. Adv. Technol. 18, 685–695 (2007)

    Article  CAS  Google Scholar 

  73. Lipp, J., Shuster, M., Terry, A.E., Cohen, Y.: Fibril formation of 1,3:2,4-Di(3,4-dimethylbenzylidene) sorbitol in polymer melts. Polym. Eng. Sci. 48, 705–710 (2008)

    Article  CAS  Google Scholar 

  74. Ahmed, S., Jones, F.R.: A review of particulate reinforcement theories for polymer composites. J. Mater. Sci. 25, 4933–4942 (1990)

    Article  CAS  Google Scholar 

  75. Sumita, M., Tsukumo, Y., Miyasaka, K., Ishikawa, K.: Tensile yield stress of polypropylene composites filled with ultrafine particles. J. Mater. Sci. 18, 1758–1764 (1983)

    Article  CAS  Google Scholar 

  76. Fröhlich, R., Thomann, R., Mülhaupt, R.: Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber. Macromolecules 36, 7205–7211 (2003)

    Article  Google Scholar 

  77. Díez-Pascual, A.M., Naffakh, M., González-Domínguez, J., Ansón, A., Martinéz-Rubi, Y., Martinéz, M.T., Simard, B., Gómez, M.A.: High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties. Carbon 48, 3500–3511 (2010)

    Article  Google Scholar 

  78. Marchant, D., Jayaraman, K.: Strategies for optimizing polypropylene-clay nanocomposite structure. Ind. Eng. Chem. Res. 41, 6402–6408 (2002)

    Article  CAS  Google Scholar 

  79. Santos, K.S., Liberman, S.A., Oviedo, M.A.S., Mauler, R.S.: Optimization of the mechanical properties of polypropylene-based nanocomposite via the addition of a combination of organoclays. Compos. Part A 40, 1199–1209 (2009)

    Article  Google Scholar 

  80. McGenity, P.M., Hooper, J.J., Paynter, C.D., Riley, A.M., Nutbeem, C., Elton, N.J., Adams, J.M.: Nucleation and crystallization of polypropylene by mineral fillers: relationship to impact strength. Polymer 33, 5215–5224 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeinolebadi, A. (2013). Polypropylene/Montmorillonite Nanocomposites: Continuous Stretching and Load-Cycling. In: In-situ Small-Angle X-ray Scattering Investigation of Transient Nanostructure of Multi-phase Polymer Materials Under Mechanical Deformation. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35413-7_5

Download citation

Publish with us

Policies and ethics