Skip to main content

Muskulo-Skeletal Interventions

  • Chapter
  • First Online:
CT- and MR-Guided Interventions in Radiology

Abstract

Radiofrequency (RF) ablation was shown to be an effective minimal invasive tool in the treatment of both malignant and benign bone lesions (Ruiz Santiago et al. 2011; Callstrom et al. 2002). Especially in the therapy of osteoid osteoma, image-guided RF ablation has emerged to be the gold standard. Osteoid osteoma is benign bone tumor which was first described by Jaffe in 1935 (Jaffe 1935). Histologically, it consists of a centrally located nidus composed of osteoblasts and osteoid which is surrounded by an area of reactive sclerosis and/or periosteal new bone formation. Prostaglandins which are produced by the tumor induce a chronic inflammatory reaction and vasodilatation which results in stimulation of unmyelinated nerve endings in the nidus causing pain. This leads to the clinical symptoms of this lesion with local pain often worsened during the night, which is typically relieved by aspirin or other related nonsteroidal anti-inflammatory drugs. Osteoid osteomas occur more frequently in men than in women (2:1), and most patients, approximately 75 %, suffering from osteoid osteomas are between 5 and 25 years old. Most commonly, osteoid osteomas are found in the diaphysis of femur and tibia followed by humerus, radius, ulna, hand, and the vertebral spine. A malignant transformation of osteoid osteoma is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Radiofrequency Ablation of Benign Bone Tumor

  • Adam G, Keulers P, Vorwerk D et al (1995) The percutaneous CT-guided treatment of osteoid osteomas: a combined procedure with a biopsy drill and subsequent ethanol injection. Rofo 162:232–235

    Article  PubMed  CAS  Google Scholar 

  • Akhlaghpoor S, Ahari AA, Ahmadi SA et al (2010a) Histological evaluation of drill fragments obtained during osteoid osteoma radiofrequency ablation. Skeletal Radiol 39:451–455

    Article  PubMed  Google Scholar 

  • Akhlaghpoor S, Aziz Ahari A, Arjmand Shabestari A et al (2010b) Radiofrequency ablation of osteoid osteoma in atypical locations: a case series. Clin Orthop Relat Res 468:1963–1970

    Article  PubMed  Google Scholar 

  • Aschoff AJ, Merkle EM, Emancipator SN et al (2002) Femur: MR imaging-guided radiofrequency-ablation in a porcine model – feasibility study. Radiology 225:471–478

    Article  PubMed  Google Scholar 

  • Barei DP, Moreau G, Scarborough MT et al (2000) Percutaneous radiofrequency ablation of osteoid osteoma. Clin Orthop Relat Res 373:115–124

    Article  PubMed  Google Scholar 

  • Callstrom MR, Charboneau JW, Goetz MP et al (2002) Painful metastases involving bone: feasibility of percutaneous CT- and US-guided radio-frequency ablation. Radiology 224:87–97

    Article  PubMed  Google Scholar 

  • Cantwell CP, Obyrne J, Eustace S (2004) Current trends in treatment of osteoid osteoma with an emphasis on radiofrequency ablation. Eur Radiol 14:607–617

    Article  PubMed  Google Scholar 

  • Cantwell CP, O’Byrne J, Eustace S (2006) Radiofrequency ablation of osteoid osteoma with cooled probes and impedance-control energy delivery. AJR Am J Roentgenol 186(5 Suppl):S244–S248

    Article  PubMed  Google Scholar 

  • Christie-Large M, Evans N, Davies AM et al (2008) Radiofrequency ablation of chondroblastoma: procedure technique, clinical and MR imaging follow up of four cases. Skeletal Radiol 37:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Cioni R, Armilotta N, Bargellini I et al (2004) CT-guided radiofrequency ablation of osteoid osteoma: long-term results. Eur Radiol 14:1203–1208

    Article  PubMed  Google Scholar 

  • Corby RR, Stacy GS, Peabody TD et al (2008) Radiofrequency ablation of solitary eosinophilic granuloma of bone. AJR Am J Roentgenol 190:1492–1494

    Article  PubMed  Google Scholar 

  • Erickson JK, Rosenthal DI, Zaleske DJ et al (2001) Primary treatment of chondroblastoma with percutaneous radio-frequency heat ablation: report of three cases. Radiology 221:463–468

    Article  PubMed  CAS  Google Scholar 

  • Davies M (2002) The diagnostic accuracy of MR imaging in osteoid osteoma. Skeletal Radiol 31:559–569

    Article  PubMed  Google Scholar 

  • Donkol RH, Al-Nammi A, Moghazi K (2008) Efficacy of percutaneous radiofrequency ablation of osteoid osteoma in children. Pediatr Radiol 38:180–185

    Article  PubMed  Google Scholar 

  • Gangi A, Alizadeh H, Wong L et al (2007) Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 242:293–301

    Article  PubMed  Google Scholar 

  • Gebauer B, Tunn PU, Gaffke G et al (2006) Osteoid osteoma: experience with laser- and radiofrequency-induced ablation. Cardiovasc Intervent Radiol 29:210–215

    Article  PubMed  Google Scholar 

  • Ghanem I, Collet LM, Kharrat K et al (2003) Percutaneous radiofrequency coagulation of osteoid osteoma in children and adolescents. J Pediatr Orthop B 12:244–252

    PubMed  Google Scholar 

  • Hoffmann RT, Jakobs TF, Kubisch CH et al (2010) Radiofrequency ablation in the treatment of osteoid osteoma-5-year experience. Eur J Radiol 73:374–379

    Article  PubMed  Google Scholar 

  • Jaffe HL (1935) “Osteoid osteoma”, a benign osteoblastic tumor composed of osteoid and atypical bone. Arch Surg 31:709–728

    Article  Google Scholar 

  • Kjar RA, Powell GJ, Schilcht SM et al (2006) Percutaneous radiofrequency ablation for osteoid osteoma: experience with a new treatment. Med J Aust 184:563–565

    PubMed  Google Scholar 

  • Lindner NJ, Scarborough M, Ciccarelli JM et al (1997) CT-controlled thermocoagulation of osteoid osteoma in comparison with traditional methods. Z Orthop Ihre Grenzgeb 135:522–527

    Article  PubMed  CAS  Google Scholar 

  • Lindner NJ, Ozaki T, Roedl R et al (2001) Percutaneous radiofrequency ablation in osteoid osteoma. J Bone Joint Surg Br 83:391–396

    Article  PubMed  CAS  Google Scholar 

  • Mahnken AH, Tacke JA, Wildberger JE et al (2006) Radiofrequency ablation of osteoid osteoma: initial results with a bipolar ablation device. J Vasc Interv Radiol 17:1465–1470

    Article  PubMed  Google Scholar 

  • Mahnken AH, Bruners P, Delbrück H et al (2011) Radiofrequency ablation of osteoid osteoma: initial experience with a new monopolar ablation device. Cardiovasc Intervent Radiol 34:579–584

    Article  PubMed  Google Scholar 

  • Marcove RC, Heelan RT, Huvos AG et al (1991) Osteoid osteoma. Diagnosis, localization, and treatment. Clin Orthop Relat Res 267:197–201

    PubMed  Google Scholar 

  • Martel J, Bueno A, Ortiz E (2005) Percutaneous radiofrequency treatment of osteoid osteoma using cool-tip electrodes. Eur J Radiol 56:403–408

    Article  PubMed  Google Scholar 

  • Mastrantuono D, Martorano D, Verna V et al (2005) Osteoid osteoma: our experience using radio-frequency (RF) treatment. Radiol Med (Torino) 109:220–228

    Google Scholar 

  • Mylona S, Patsoura S, Galani P et al (2010) Osteoid osteomas in common and in technically challenging locations treated with computed tomography-guided percutaneous radiofrequency ablation. Skeletal Radiol 39:443–449

    Article  PubMed  Google Scholar 

  • Neumann D, Berka H, Dorn U et al (2012) Follow-up of thirty-three computed-tomography-guided percutaneous radiofrequency thermoablations of osteoid osteoma. Int Orthop 36:811–815

    Article  PubMed  Google Scholar 

  • Omlor G, Merle C, Lehner B et al (2012) CT-guided percutaneous radiofrequency ablation in osteoid osteoma: re-assessments of results with optimized technique and possible pain patterns in mid-term follow-up. Rofo 184:333–339

    Article  PubMed  CAS  Google Scholar 

  • Petsas T, Megas P, Papathanassiou Z (2007) Radiofrequency ablation of two femoral head chondroblastomas. Eur J Radiol 63:63–67

    Article  PubMed  Google Scholar 

  • Peyser A, Applbaum Y, Khoury A et al (2007) Osteoid osteoma: CT-guided radiofrequency ablation using a water-cooled probe. Ann Surg Oncol 14:591–596

    Article  PubMed  CAS  Google Scholar 

  • Pinto CH, Taminiau AHM, Vanderschueren GM et al (2002) Technical considerations in CT-guided radiofrequency thermal ablation of osteoid osteoma: tricks of the trade. AJR Am J Roentgenol 179:1633–1642

    Article  PubMed  Google Scholar 

  • Ramnath RR, Rosenthal DI, Cates J et al (2002) Intracortical chondroma simulating osteoid osteoma treated by radiofrequency. Skeletal Radiol 31:597–602

    Article  PubMed  Google Scholar 

  • Rimondi E, Bianchi G, Malaguti MC et al (2005) Radiofrequency thermoablation of primary non-spinal osteoid osteoma: optimization of the procedure. Eur Radiol 15:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal DI, Alexander A, Rosenberg AE et al (1992) Ablation of osteoid osteomas with percutaneously placed electrode: a new procedure. Radiology 183:29–33

    PubMed  CAS  Google Scholar 

  • Rosenthal DI, Hornicek FJ, Wolfe MW et al (1998) Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am 80:815–821

    PubMed  CAS  Google Scholar 

  • Rosenthal D, Hornicek FJ, Torriani M et al (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229:171–175

    Article  PubMed  Google Scholar 

  • Rybak LD, Rosenthal DI, Wittig JC (2009) Chondroblastoma: radiofrequency ablation – alternative to surgical resection in selected cases. Radiology 251:599–604

    Article  PubMed  Google Scholar 

  • Sans N, Galy-Fourcade D, Assoun J et al (1999) Osteoid osteoma: CT-guided percutaneous resection and follow up in 38 patients. Radiology 212:687–692

    PubMed  CAS  Google Scholar 

  • Schmidt D, Clasen S, Schaefer JF et al (2011) CT-guided radiofrequency (RF) ablation of osteoid osteoma: clinical long-term results. Rofo 183:381–387

    Article  PubMed  CAS  Google Scholar 

  • Ruiz Santiago F, Castellano García Mdel M, Guzmán Álvarez L et al (2011) Percutaneous treatment of bone tumors by radiofrequency thermal ablation. Eur J Radiol 77:156–163

    Article  PubMed  Google Scholar 

  • Sequeiros RB, Hyvonen P, Sequeiros AB et al (2003) MR imaging guided laser ablation of osteoid osteomas with use of optical instrument guidance at 0.23 T. Eur Radiol 13:2309–2314

    Article  PubMed  Google Scholar 

  • Skjedal S, Lilleås F, Follerås G et al (2000) Real-time MRI-guided excision and cry-treatment of osteoid osteoma in os ischii: a case report. Acta Orthop Scand 71:637–638

    Article  Google Scholar 

  • Skonieczki BD, Wells C, Wasser EJ et al (2011) Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: is it safe? Eur J Radiol 79:343–346

    Article  PubMed  Google Scholar 

  • Soong M, Jupiter J, Rosenthal D (2006) Radiofrequency ablation of osteoid osteoma in the upper extremity. J Hand Surg [Am] 31:279–283

    Article  Google Scholar 

  • Tins B, Cassar-Pullicino V, McCall I et al (2006) Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results. Eur Radiol 14:804–810

    Article  Google Scholar 

  • Vanderschueren GM, Taminiau AHM, Obermann WR et al (2002) Osteoid Osteoma: clinical results with thermocoagulation. Radiology 224:82–86

    Article  PubMed  Google Scholar 

  • Vanderschueren GM, Taminiau AH, Obermann WR et al (2004) Osteoid osteoma: factors for increased risk of unsuccessful thermal coagulation. Radiology 233:757–762

    Article  PubMed  Google Scholar 

  • Vanderschueren GM, Obermann WR, Dijkstra SP et al (2009) Radiofrequency ablation of spinal osteoid osteoma: clinical outcome. Spine (Phila Pa 1976) 34:901–904

    Article  Google Scholar 

  • Venbrux AC, Montague BJ, Murphy KPJ et al (2003) Image-guided percutaneous radiofrequency ablation for osteoid osteomas. J Vasc Interv Radiol 14:375–380

    Article  PubMed  Google Scholar 

  • Witt JD, Hall-Craggs MA, Ripley P et al (2000) Interstitial laser photocoagulation for the treatment of osteoid osteoma. J Bone Joint Surg Br 82:1125–1128

    Article  PubMed  CAS  Google Scholar 

  • Woertler K, Vestring T, Boettner F et al (2001) Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 12:717–722

    Article  PubMed  CAS  Google Scholar 

  • Yip PS, Lam YL, Chan MK et al (2006) Computed tomography-guided percutaneous radiofrequency ablation of osteoid osteoma: local experience. Hong Kong Med J 12:305–309

    PubMed  CAS  Google Scholar 

Vertebroplasty, Osteoplasty, and Sacroplasty

  • Barragan-Campos HM, Vallee JN, Lo D et al (2006) Percutaneous vertebroplasty for spinal metastases: complications. Radiology 238:354–362

    Article  PubMed  Google Scholar 

  • Bornemann R, Deml M, Wilhelm KE et al (2012) Long-term efficacy and safety of balloon kyphoplasty for treatment of osteoporotic vertebral fractures. Z Orthop Unfall 150(4):381–388

    Article  PubMed  CAS  Google Scholar 

  • Deramond H, Depriester C, Galibert P, Le Gars D (1998) Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 36:533–546

    Article  PubMed  CAS  Google Scholar 

  • Galibert P, Deramond H, Rosat P, Le Gars D (1987) Note préliminaire sur le traitement des angiomes vertébraux par vertébroplastie acrylique percutanée. Neurochirurgie 33:166–168

    PubMed  CAS  Google Scholar 

  • Endres S, Badura A (2012) Shield kyphoplasty through a unipedicular approach compared to vertebroplasty and balloon kyphoplasty in osteoporotic thoracolumbar fracture: a prospective randomized study. Orthop Traumatol Surg Res 98:334–340

    Article  PubMed  CAS  Google Scholar 

  • Gangi A, Kastler BA, Dietemann JL (1994) Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. AJNR Am J Neuroradiol 15:83–86

    PubMed  CAS  Google Scholar 

  • Georgy BA, Wong W (2007) Plasma-mediated radiofrequency ablation assisted percutaneous cement injection for treating advanced malignant vertebral compression fractures. AJNR Am J Neuroradiol 28:700–705

    PubMed  CAS  Google Scholar 

  • Grönemeyer DH, Schirp S, Gevargez A (2002) Image-guided radiofrequency ablation of spinal tumors: preliminary experience with an expandable array electrode. Cancer J 8:33–39

    Article  PubMed  Google Scholar 

  • Helmberger T, Bohndorf K, Hierholzer J, Noldge G, Vorwerk D (2003) Guidelines of the German Radiological Society for percutaneous vertebroplasty. Radiologe 43:703–708 [German]

    Article  PubMed  CAS  Google Scholar 

  • Hodek-Wuerz R, Martin JB, Wilhelm K, Lovblad KO, Babic D, Rufenacht DA, Wetzel SG (2006) Percutaneous vertebroplasty: preliminary experiences with rotational acquisitions and 3D reconstructions for therapy control. Cardiovasc Intervent Radiol 29:862–865

    Article  PubMed  Google Scholar 

  • Huegli RW, Schaeren S, Jacob AL, Martin JB, Wetzel SG (2005) Percutaneous cervical vertebroplasty in a multifunctional image-guided therapy suite: hybrid lateral approach to C1 and C4 under CT and fluoroscopic guidance. Cardiovasc Intervent Radiol 28:649–652

    Article  PubMed  CAS  Google Scholar 

  • Kelekis AD, Martin JB (2005) Radicular pain after vertebroplasty: complication and prevention. Skeletal Radiol 34:816

    Article  PubMed  Google Scholar 

  • Koh YH, Han D, Cha JH, Seong CK, Kim J, Choi YH (2007) Vertebroplasty: magnetic resonance findings related to cement leakage risk. Acta Radiol 48:315–320

    Article  PubMed  CAS  Google Scholar 

  • Lin WC, Lee CH, Chen SH, Lui CC (2007) Unusual presentation of infected vertebroplasty with delayed cement dislodgment in an immunocompromised patient: case report and review of literature. Cardiovasc Intervent Radiol 31(Suppl 2):S231–S235

    PubMed  Google Scholar 

  • Martin JB, Gailloud P, Dietrich PY, Luciani ME, Somon T, Sappino PA, Rüfenach DA (2002) Direct transoral approach to C2 for percutaneous vertebroplasty. Cardiovasc Intervent Radiol 25:517–519

    Article  PubMed  Google Scholar 

  • Mathis JM (2006) Percutaneous vertebroplasty: procedure technique. In: Mathis JM, Deramond H, Belkoff ST (eds) Percutaneous vertebroplasty and kyphoplasty, 2nd edn. Springer, Berlin/Heidelberg/New York

    Chapter  Google Scholar 

  • Murphy KJ, Kelekis DA, Rundback J et al (2008) Development of a research agenda for skeletal intervention: proceedings of a multidisciplinary consensus panel. Cardiovasc Intervent Radiol 31:678–686

    Article  PubMed  Google Scholar 

  • McGraw JK, Cardella J, Barr JD et al (2003) Society of interventional radiology quality improvement guidelines for percutaneous vertebroplasty. J Vasc Interv Radiol 14:S311–S315

    Article  PubMed  Google Scholar 

  • Shah RV (2012) Sacral kyphoplasty for the treatment of painful sacral insufficiency fractures and metastases. Spine J 12:113–120

    Article  PubMed  Google Scholar 

  • Söyüncü Y, Ozdemir H, Söyüncü S, Bigat Z, Gür S (2006) Posterior spinal epidural abscess: an unusual complication of vertebroplasty. Joint Bone Spine 73: 753–755

    Article  PubMed  Google Scholar 

  • Tanigawa N, Komemushi A, Kariya S, Kojima H, Shomura Y, Ikeda K, Omura N, Murakami T, Sawada S (2006) Percutaneous vertebroplasty: relationship between vertebral body bone marrow edema pattern on MR images and initial clinical response. Radiology 239:195–200

    Article  PubMed  Google Scholar 

  • Toyota N, Naito A, Kakizawa H, Hieda M, Hirai N, Tachikake T, Kimura T, Fukuda H, Ito K (2005) Radiofrequency ablation therapy combined with cementoplasty for painful bone metastases: initial experience. Cardiovasc Intervent Radiol 28:578–583

    Article  PubMed  Google Scholar 

  • Voormolen MH, van Rooij WJ, Sluzewski M, van der Graaf Y, Lampmann LE, Lohle PN, Juttmann JR (2006) Pain response in the first trimester after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures with or without bone marrow edema. AJNR Am J Neuroradiol 27:1579–1585

    PubMed  CAS  Google Scholar 

  • Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E (1996) Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 199:241–247

    PubMed  CAS  Google Scholar 

  • Weill A, Kobaiter H, Chiras J (1998) Acetabulum malignancies: technique and impact on pain of percutaneous injection of acrylic surgical cement. Eur Radiol 8:123–129

    Article  PubMed  CAS  Google Scholar 

  • Wetzel SG, Wilhelm KE (2006) Perkutane Vertebroplastie und Kyphoplastie. Radiol Up2 Date 3:255–272

    Article  Google Scholar 

  • Wetzel SG, Martin JB, Somon T, Wilhelm K, Rufenacht DA (2002) Painful osteolytic metastasis of the atlas: treatment with percutaneous vertebroplasty. Spine 27:E493–E495

    Article  PubMed  Google Scholar 

  • Wilhelm K (2009) Osteoplastie in Kombination mit der Radiofrequenzablation zur palliativem Therapie schmerzhafter osteolytischer Knochenmetastasen. Deutsche Zeitschrift für Onkologie 41:183–186

    Article  Google Scholar 

  • Wilhelm K, Babic D (2006) 3D angiography in the interventional clinical routine. Medicamundi 12:24–31

    Google Scholar 

Percutaneous Osteosynthesis of the Pelvis and the Acetabulum

  • Arand M, Kinzl L, Gebhard F (2004) Computer-guidance in percutaneous screw stabilization of the iliosacral joint. Clin Orthop Relat Res 422:201–207

    Article  PubMed  Google Scholar 

  • Ben-Menachem Y, Coldwell DM, Young JW et al (1991) Hemorrhage associated with pelvic fractures: causes, diagnosis, and emergent management. AJR Am J Roentgenol 157:1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Cleary K, Melzer A, Watson V et al (2006) Interventional robotic systems: applications and technology state-of-the-art. Minim Invasiv Ther Allied Technol 15:101–113

    Article  Google Scholar 

  • Ebraheim NA, Biyani A (2003) Percutaneous computed tomographic stabilization of the pathologic sacroiliac joint. Clin Orthop Relat Res 408:252–255

    Article  PubMed  Google Scholar 

  • Ebraheim NA, Rusin JJ, Coombs RJ et al (1987) Percutane­ous computed-tomography-stabilization of pelvic fractures: preliminary report. J Orthop Trauma 1:197–204

    Article  PubMed  CAS  Google Scholar 

  • Falchi M, Rollandi GA (2004) CT of pelvic fractures. Eur J Radiol 50:96–105

    Article  PubMed  Google Scholar 

  • Gansslen A, Pohlemann T, Paul C et al (1996) Epidemiology of pelvic ring injuries. Injury 27(Suppl 1):S-A13–S-A20

    Google Scholar 

  • Gansslen A, Hufner T, Krettek C (2006) Percutaneous iliosacral screw fixation of unstable pelvic injuries by conventional fluoroscopy. Oper Orthop Traumatol 18:225–244

    Article  PubMed  Google Scholar 

  • Gay SB, Sistrom C, Wang GJ et al (1992) Percutaneous screw fixation of acetabular fractures with CT guidance: preliminary results of a new technique. AJR Am J Roentgenol 158:819–822

    Article  PubMed  CAS  Google Scholar 

  • Glauser D, Fankhauser H, Epitaux M et al (1995) Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg 1:266–272

    Article  PubMed  CAS  Google Scholar 

  • Gross T, Jacob AL, Messmer P et al (2004) Transverse acetabular fracture: hybrid minimal access and percutaneous CT navigated fixation. AJR Am J Roentgenol 183:1000–1002

    Article  PubMed  Google Scholar 

  • Grützner PA, Rose E, Vock B et al (2002) Computer assisted screw osteosynthesis of the posterior pelvic ring. Initial experiences with an image reconstruction based optoelectronic navigation system. Unfallchirurgie 105:254–260 [German]

    Article  Google Scholar 

  • Guillamondegui OD, Pryor JP, Gracias VH et al (2002) Pelvic radiography in blunt trauma resuscitation: a diminishing role. J Trauma 53:1043–1047

    Article  PubMed  Google Scholar 

  • Huegli RW, Messmer P, Jacob AL et al (2003) Delayed union of a sacral fracture: percutaneous navigated autologous cancellous bone grafting and screw fixation. Cardiovasc Intervent Radiol 26:502–505

    Article  PubMed  CAS  Google Scholar 

  • Hunter JC, Brandser EA, Tran KA (1997) Pelvic and acetabular trauma. Radiol Clin North Am 35:559–590

    PubMed  CAS  Google Scholar 

  • Isler B, Ganz R (1996) Classification of pelvic ring injuries. Injury 27(Suppl 1):S-A3–S-A12

    Google Scholar 

  • Jacob AL, Messmer P, Stock KW et al (1997) Posterior pelvic ring fractures: closed reduction and ­percutaneous CT guided sacroiliac screw fixation. Cardiovasc Intervent Radiol 20:285–294

    Article  PubMed  CAS  Google Scholar 

  • Jacob AL, Suhm N, Kaim A et al (2000a) Coronal acetabular fractures: the anterior approach in computed tomography-navigated minimally invasive percutaneous fixation. Cardiovasc Intervent Radiol 23:327–331

    Article  PubMed  CAS  Google Scholar 

  • Jacob AL, Kaim A, Baumann B et al (2000b) A simple device for continuous leg extension during CT-guided interventions. AJR Am J Roentgenol 174:1687–1688

    Article  PubMed  CAS  Google Scholar 

  • Jacob AL, Regazzoni P, Steinbrich W et al (2000c) The multifunctional therapy room of the future: image guidance, interdisciplinarity, integration and impact on patient pathways. Eur Radiol 10:1763–1769

    Article  PubMed  CAS  Google Scholar 

  • Judet R, Judet J, Letournel E (1964) Fracture of the acetabulum: classification and surgical approaches for open reduction. Preliminary report. J Bone Joint Surg Am 46:1615–1646

    PubMed  CAS  Google Scholar 

  • Keating JF, Werier J, Blachut P et al (1999) Early fixation of the vertically unstable pelvis: the role of iliosacral screw fixation of the posterior lesion. J Orthop Trauma 13:107–113

    Article  PubMed  CAS  Google Scholar 

  • Kellam JF (1989) The role of external fixation in pelvic disruptions. Clin Orthop Relat Res 241:66–82

    PubMed  Google Scholar 

  • Kellam JF, McMurtry RY, Paley D et al (1987) The unstable pelvic fracture. Operative treatment. Orthop Clin North Am 18:25–41

    PubMed  CAS  Google Scholar 

  • Letournel E (1993) The treatment of acetabular fractures through the ilioinguinal approach. Clin Orthop Relat Res 292:62–76

    PubMed  Google Scholar 

  • Matta JM, Saucedo T (1989) Internal fixation of pelvic ring fractures. Clin Orthop Relat Res 242:83–97

    PubMed  Google Scholar 

  • Meyer BC, Peter O, Nagel M et al (2008) Electromagnetic field-based navigation for percutaneous punctures on C-arm CT: experimental evaluation and clinical application. Eur Radiol 18:2855–2864

    Article  PubMed  Google Scholar 

  • Miyazawa K, Kawaguchi M, Tabuchi M et al (2010) Accurate pre-surgical determination for self-drilling miniscrew implant placement using surgical guides and cone-beam computed tomography. Eur J Orthod 32:735–740

    Article  PubMed  Google Scholar 

  • Moed BR, Ahmad BK, Craig JG et al (1998) Intraoperative monitoring with stimulus-evoked electromyography during placement of iliosacral screws. An initial clinical study. J Bone Joint Surg Am 80:537–546

    PubMed  CAS  Google Scholar 

  • Müller ME, Perren SM, Allgöwer M (1991) Manual of internal fixation: techniques recommended by the AO-ASIF Group, expanded and completely revised. Arbeitsgemeinschaft für Osteosynthesefragen, 3rd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Nelson DW, Duwelius PJ (1991) CT-guided fixation of sacral fractures and sacroiliac joint disruptions. Radiology 180:527–532

    PubMed  CAS  Google Scholar 

  • Orth RC, Wallace MJ, Kuo MD (2008) C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 19:814–820

    Article  PubMed  Google Scholar 

  • Peng KT, Huang KC, Chen MC et al (2006) Percutaneous placement of iliosacral screws for unstable pelvic ring injuries: comparison between one and two C-arm fluoroscopic techniques. J Trauma 60:602–608

    Article  PubMed  Google Scholar 

  • Pohlemann T, Angst M, Schneider E et al (1993) Fixation of transforaminal sacrum fractures: a biomechanical study. J Orthop Trauma 7:107–117

    Article  PubMed  CAS  Google Scholar 

  • Pohlemann T, Bosch U, Gansslen A et al (1994) The Hannover experience in management of pelvic fractures. Clin Orthop Relat Res 305:69–80

    Article  PubMed  Google Scholar 

  • Poole GV, Ward EF (1994) Causes of mortality in patients with pelvic fractures. Orthopedics 17:691–696

    PubMed  CAS  Google Scholar 

  • Qureshi AA, Archdeacon MT, Jenkins MA et al (2004) Infrapectineal plating for acetabular fractures: a technical adjunct to internal fixation. J Orthop Trauma 18:175–178

    Article  PubMed  Google Scholar 

  • Routt ML Jr, Kregor PJ, Simonian PT et al (1995a) Early results of percutaneous iliosacral screws placed with the patient in the supine position. J Orthop Trauma 9:207–214

    Article  PubMed  Google Scholar 

  • Routt ML Jr, Simonian PT, Grujic L (1995b) The retrograde medullary superior pubic ramus screw for the treatment of anterior pelvic ring disruptions: a new technique. J Orthop Trauma 9:35–44

    Article  PubMed  Google Scholar 

  • Schrader P (2005) Technique evaluation for orthopedic use of Robodoc. Z Orthop Ihre Grenzgeb 143:329–336

    Article  PubMed  CAS  Google Scholar 

  • Senst W, Bida B (2000) Expert assessment of pelvic injuries. Zentralbl Chir 125:737–743 [German]

    Article  PubMed  CAS  Google Scholar 

  • Siebert W, Mai S, Kober R et al (2002) Technique and first clinical results of robot-assisted total knee replacement. Knee 9:173–180

    Article  PubMed  Google Scholar 

  • Simonian PT, Routt ML Jr, Harrington RM et al (1994a) Biomechanical simulation of the anteroposterior compression injury of the pelvis. An understanding of instability and fixation. Clin Orthop Relat Res 309:245–256

    PubMed  Google Scholar 

  • Simonian PT, Routt ML Jr, Harrington RM et al (1994b) Internal fixation of the unstable anterior pelvic ring: a biomechanical comparison of standard plating techniques and the retrograde medullary superior pubic ramus screw. J Orthop Trauma 8:476–482

    PubMed  CAS  Google Scholar 

  • Starr AJ, Reinert CM, Jones AL (1998) Percutaneous fixation of the columns of the acetabulum: a new technique. J Orthop Trauma 12:51–58

    Article  PubMed  CAS  Google Scholar 

  • Starr AJ, Jones AL, Reinert CM et al (2001) Preliminary results and complications following limited open reduction and percutaneous screw fixation of displaced fractures of the acetabulum. Injury 32(Suppl 1):SA45–SA50

    PubMed  Google Scholar 

  • Stöckle U, Krettek C, Pohlemann T et al (2004) Clinical applications – pelvis. Injury 35(Suppl 1):S-A46–S-A56

    Google Scholar 

  • Tile M (1996) Acute pelvic fractures: I. Causation and classification. J Am Acad Orthop Surg 4:143–151

    PubMed  Google Scholar 

  • Tile M (2003) Fractures of the pelvis and acetabulum, 3rd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • van den Bosch EW, van Zwienen CM, van Vugt AB (2002) Fluoroscopic positioning of sacroiliac screws in 88 patients. J Trauma 53:44–48

    Article  PubMed  Google Scholar 

  • Wedegartner U, Gatzka C, Rueger JM et al (2003) Multi-slice CT (MSCT) in the detection and classification of pelvic and acetabular fractures. Rofo 175:105–111 [German]

    Article  PubMed  CAS  Google Scholar 

  • Yinger K, Scalise J, Olson SA et al (2003) Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma 17:481–487

    Article  PubMed  Google Scholar 

CT- and MR-Guided Arthrography

  • Bachmann G, Bauer T, Jürgens I et al (1998) The diagnostic accuracy and therapeutic relevance of CT arthrography and MR arthrography of the shoulder. Rofo 168:149–156

    Article  PubMed  CAS  Google Scholar 

  • Bille B, Harley B, Cohen H (2007) A comparison of CT arthrography of the wrist to findings during wrist arthroscopy. J Hand Surg Am 32:834–841

    Article  PubMed  Google Scholar 

  • Blitzer M, Nasko M, Krackhardt T et al (2004) Direct CT-arthrography versus direct MR-arthrography in chronic shoulder instability: comparison of modalities after the introduction of multidetector-CT technology. Rofo 176:1770–1775

    Article  Google Scholar 

  • Brossmann J, Preidler KW, Daenen B et al (1996) Imaging of osseous and cartilaginous intraarticular bodies in the knee: comparison of MR imaging and MR arthrography with CT and CT arthrography in cadavers. Radiology 200:509–517

    PubMed  CAS  Google Scholar 

  • Christie-Large M, Tapp MJ, Theivendran K et al (2010) The role of multidetector CT arthrography in the investigation of suspected intra-articular hip pathology. Br J Radiol 83:861–867

    Article  PubMed  CAS  Google Scholar 

  • Dubberley JH, Faber KJ, Patterson SD et al (2005) The detection of loose bodies in the elbow: the value of MRI and CT arthrography. J Bone Joint Surg Br 87:684–686

    Article  PubMed  CAS  Google Scholar 

  • Fogerty S, King DG, Groves C et al (2011) Interobserver variation in reporting CT arthrograms of the shoulder. Eur J Radiol 80:811–813

    Article  PubMed  CAS  Google Scholar 

  • Guntern DV, Pfirrmann CW, Schmid MR et al (2003) Articular cartilage lesions of the glenohumeral joint: diagnostic effectiveness of MR arthrography and prevalence in patients with subacromial impingement syndrome. Radiology 226:165–170

    Article  PubMed  Google Scholar 

  • Lecouvet FE, Dorzee B, Dubuc JE et al (2007) Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol 17:1763–1771

    Article  PubMed  Google Scholar 

  • Moser T, Dosch JC, Moussaoui A, Dietemann JL (2007) Wrist ligament tears: evaluation of MRI and combined MDCT and MR arthrography. AJR Am J Roentgenol 188:1278–1286

    Article  PubMed  Google Scholar 

  • Müller MC, Lagarde SM, Germans MR et al (2010) Cerebral air embolism after arthrography of the ankle. Med Sci Monit 16:CS92–CS94

    PubMed  Google Scholar 

  • Mutschler C, Vande Berg BC, Lecouvet FE et al (2003) Postoperative meniscus: assessment of dual-detector row spiral CT arthrography of the knee. Radiology 228:635–641

    Article  PubMed  Google Scholar 

  • Nishii T, Tanaka H, Sugano N et al (2007) Disorders of acetabular labrum and articular cartilage in hip dysplasia: evaluation using isotropic high-resolution CT arthrography with sequential radial reformation. Osteoarthritis Cartilage 15:251–257

    Article  PubMed  CAS  Google Scholar 

  • Pfirrmann CWA, Mengiardi B, Dora C et al (2006) Cam and pincer femoroacetabular impingement. Radiology 240:778–785

    Article  PubMed  Google Scholar 

  • Schmid MR, Nötzli HP, Zanetti M et al (2003) Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology 226:282–286

    Article  Google Scholar 

  • Schulte-Altedorneburg G, Gebhard M, Wohlgemuth WA et al (2003) MR arthrography: pharmacology, efficacy and safety in clinical trials. Skeletal Radiol 32:1–12

    Article  PubMed  CAS  Google Scholar 

  • Schwartz ML, al-Zahrani S, Morwessel RM et al (1995) Ulnar collateral ligament injury in the throwing athlete: evaluation with saline-enhanced MR-arthrography. Radiology 197:297–299

    PubMed  CAS  Google Scholar 

  • Smith TO, Hilton G, Toms AP et al (2011) The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol 21:863–874

    Article  PubMed  Google Scholar 

  • Timmerman LA, Schwartz ML, Andrews JR (1994) Preoperative evaluation of the ulnar collateral ligament by magnetic resonance imaging and computed tomography arthrography. Am J Sports Med 22:26–31

    Article  PubMed  CAS  Google Scholar 

  • Toomayan GA, Holman WR, Major NM et al (2006) Sensitivity of MR arthrography in the evaluation of acetabular labral tears. Am J Roentgenol 186:449–453

    Article  Google Scholar 

  • van Dijk CN, Molenaar AH, Cohnen RH et al (1998) Value of arthrography after supinator trauma of the ankle. Skeletal Radiol 27:256–261

    Article  PubMed  Google Scholar 

  • Waldt S, Bruegel M, Ganter K et al (2005) Comparison of multisclice CT arthrography and MR arthrography in the detection of articular cartilage lesions. Eur Radiol 15:784–791

    Article  PubMed  CAS  Google Scholar 

  • Waldt S, Bruegel M, Mueller D et al (2007) Rotator cuff tears: assessment with MR arthrography in 275 patients with arthroscopic correlation. Eur Radiol 17:491–498

    Article  PubMed  CAS  Google Scholar 

  • White LM, Schweitzer ME, Weishaupt D et al (2002) Diagnosis of recurrent meniscal tears: prospective evaluation of conventional MR imaging, indirect MR arthrography, and direct MR arthrography. Radiology 222:421–429

    Article  PubMed  Google Scholar 

  • Zubler C, Mengiardi B, Hodler J et al (2007) MR arthrography in calcific tendinitis of the shoulder: diagnostic performance and pitfalls. Eur Radiol 17:1603–1610

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Bruners .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruners, P. et al. (2013). Muskulo-Skeletal Interventions. In: Mahnken, A., Wilhelm, K., Ricke, J. (eds) CT- and MR-Guided Interventions in Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33581-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33581-5_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33580-8

  • Online ISBN: 978-3-642-33581-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics