Skip to main content

DFT Chemical Reactivity Driven by Biological Activity: Applications for the Toxicological Fate of Chlorinated PAHs

  • Chapter
  • First Online:
Applications of Density Functional Theory to Biological and Bioinorganic Chemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 150))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benfenati E (2007) Chem Cent J 1:32

    Article  CAS  Google Scholar 

  2. Wang J, Hou T (2010) J Chem Inf Model 50:55–67

    Article  CAS  Google Scholar 

  3. EC: European Comision, Join Research Centre, Institute for health and Consumer Protection (2010) http://ecb.jrc.ec.europa.eu/qsar/

  4. Cherkasov A (2005) Curr Comp Aided Drug Des 1:21–42

    Article  CAS  Google Scholar 

  5. OECD (2007) OECD (Organization for Economic Co-operation and Development): Guidance document [ENV/JM/MONO(2007)2] on the validation of (Quantitative) structure–activity relationship [(Q)SAR] models. OECD Environment Health and Safety Publications (2007) Series on Testing and Assessment, No. 69, Paris

    Google Scholar 

  6. QCS: QSAR and Combinatorial Science (2008) 27:1–132 (Special Issue on Computational Assessment of Toxicity and Environmental Fate)

    Google Scholar 

  7. Parr RG (1983) Annu Rev Phys Chem 34:631–656

    Article  CAS  Google Scholar 

  8. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  9. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  10. Ayers PW, Parr RG (2001) J Am Chem Soc 123:2007–2017

    Article  CAS  Google Scholar 

  11. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  12. Putz MV (2012) Quantum theory: density, condensation, and bonding. Apple Academics and CRC, Taylor & Francis Group, Toronto

    Google Scholar 

  13. Pauling L (1932) J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  14. Mulliken RS (1934) J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  15. Allred AL, Rochow EG (1958) J Inorg Nucl Chem 5:264–268

    Article  CAS  Google Scholar 

  16. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547–3551

    Article  CAS  Google Scholar 

  17. Klopman G (1965) J Chem Phys 43:S124–S129

    Article  CAS  Google Scholar 

  18. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3808

    Article  CAS  Google Scholar 

  19. Bartolotti LJ, Gadre SR, Parr RG (1980) J Am Chem Soc 102:2945–2948

    Article  CAS  Google Scholar 

  20. Bergmann D, Hinze J (1987) Struct Bond 66:145–190

    Article  CAS  Google Scholar 

  21. Allen LC (1989) J Am Chem Soc 111:9003–9014

    Article  CAS  Google Scholar 

  22. Boyd RJ, Markus GE (1981) J Chem Phys 75:5385–5389

    Article  CAS  Google Scholar 

  23. Bratsch SG (1985) J Chem Educ 62:101–103

    Article  CAS  Google Scholar 

  24. Sen KD, Jørgensen CK (eds) (1987) Electronegativity. In: Structure and bonding, vol 66. Springer, Berlin

    Google Scholar 

  25. Putz MV (2003) Contributions within density functional theory with applications to chemical reactivity theory and electronegativity. Dissertation.com, Parkland

    Google Scholar 

  26. Putz MV, Russo N, Sicilia E (2005) Theor Chem Acc 114:38–45

    Article  CAS  Google Scholar 

  27. Putz MV (2009) Int J Quantum Chem 109:733–738

    Article  CAS  Google Scholar 

  28. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  29. Pearson RG (1985) J Am Chem Soc 107:6801–6806

    Article  CAS  Google Scholar 

  30. Pearson RG (1986) Proc Natl Acad Sci USA 83:8440–8441

    Article  CAS  Google Scholar 

  31. Pearson RG (1988) Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  32. Pearson RG (1989) Org Chem 54:1423–1430

    Article  CAS  Google Scholar 

  33. Gázquez JL, Ortiz E (1984) J Chem Phys 81:2741–2748

    Article  Google Scholar 

  34. Berkowitz M, Parr RG (1988) J Chem Phys 88:2554–2557

    Article  CAS  Google Scholar 

  35. Sen KD, Mingos DMP (eds) (1993) Chemical hardness. In: Structure and bonding, vol 80. Springer, Berlin

    Google Scholar 

  36. Parr RG, Gázquez JL (1993) J Phys Chem 97:3939–3940

    Article  CAS  Google Scholar 

  37. Robles J, Bartolotti LJ (1984) J Am Chem Soc 106:3723–3727

    Article  CAS  Google Scholar 

  38. Nalewajski RF (1984) J Am Chem Soc 106:944–945

    Article  CAS  Google Scholar 

  39. Komorowski L (1987) Chem Phys 55:114–130

    Google Scholar 

  40. Komorowski L, Boyd SL, Boyd RJ (1996) J Phys Chem 100:3448–3453

    Article  CAS  Google Scholar 

  41. Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  42. Putz MV (2006) Int J Quantum Chem 106:361–389

    Article  CAS  Google Scholar 

  43. Putz MV (2007) J Theor Comput Chem 6:33–47

    Article  CAS  Google Scholar 

  44. Putz MV (2008) Absolute and chemical electronegativity and hardness. Nova Science, New York

    Google Scholar 

  45. Putz MV (2011) Curr Phys Chem 1:111–139

    Article  CAS  Google Scholar 

  46. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    Google Scholar 

  47. Chattaraj PK, Giri S, Duley S (2011) Chem Rev 111:PR43–PR75

    Google Scholar 

  48. Lv S (2011) J Phys Chem A 115:8528–8531

    Article  CAS  Google Scholar 

  49. Chattaraj PK, Giri S, Duley S (2012) J Phys Chem A 116:790–791

    Article  CAS  Google Scholar 

  50. Lv S (2012) J Phys Chem A 116:792–795

    Article  CAS  Google Scholar 

  51. Islam N, Ghosh DC (2012) Int J Mol Sci 13:2160–2175

    Article  CAS  Google Scholar 

  52. Brown AJ (1892) J Chem Soc Trans 61:369–385

    Article  CAS  Google Scholar 

  53. Brown AJ (1902) J Chem Soc Trans 81:373–388

    Article  CAS  Google Scholar 

  54. Henri V (1901) Z Phys Chem 39:194–216

    Google Scholar 

  55. Henri V (1902) C R Hebd Acad Sci 135:916–919

    CAS  Google Scholar 

  56. Michaelis L, Menten ML (1913) Biochem Z 49:333–369

    CAS  Google Scholar 

  57. Haldane JBS (1930) The enzymes. Longmans-Green, London

    Google Scholar 

  58. Pauling L (1946) Chem Eng News 24:1375–1377

    Article  CAS  Google Scholar 

  59. Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  60. Cornish-Bowden A (1999) Fundamentals of enzyme kinetics. Butterworths, London

    Google Scholar 

  61. Copeland RA (2000) Enzymes. Wiley-VCH, New York

    Book  Google Scholar 

  62. Schnell S, Maini PK (2003) Commun Theor Biol 8:169–187

    Article  Google Scholar 

  63. Topliss JG, Costello JD (1972) J Med Chem 15:1066–1069

    Article  CAS  Google Scholar 

  64. Topliss JG, Edwards RP (1979) J Med Chem 22:1238–1244

    Article  CAS  Google Scholar 

  65. Topliss J (1983) Quantitative structure–activity relationships of drugs. Academic, New York

    Google Scholar 

  66. Seyfel JK (1985) QSAR and strategies in the design of bioactive compounds. VCH Weinheim, New York

    Google Scholar 

  67. Nendza M, Wenzel A (1993) Environ Toxicol Chem Suppl:1459–1470

    Google Scholar 

  68. Kubinyi H (1994) Pharmazie in unserer Zeit 23:158–168

    Article  CAS  Google Scholar 

  69. Klopman G, Zhang Z, Woodgate SD, Rosenkranz HS (1995) Chemosphere 31:2511–2519

    Article  CAS  Google Scholar 

  70. Lhuguenot JC (1995) Ann Fals Exp Chim 88:293–310

    CAS  Google Scholar 

  71. Hansch C, Hoekman D, Gao H (1996) Chem Rev 96:1045–1075

    Article  CAS  Google Scholar 

  72. Klein DJ, Randić M, Babić D, Lučić B, Nikolić S, Trinajstić N (1997) Int J Quantum Chem 63:215–222

    Article  CAS  Google Scholar 

  73. Schmidli H (1997) Chemomet Intell Lab Syst 37:125–134

    Article  CAS  Google Scholar 

  74. Putz MV (ed) (2012) QSAR & SPECTRAL-SAR in computational ecotoxicology. Apple Academics and CRC, Taylor & Francis Group, Toronto

    Google Scholar 

  75. Parr RG, Bartolotti LJ (1982) J Am Chem Soc 104:3801–3803

    Article  CAS  Google Scholar 

  76. Sanderson RT (1988) J Chem Educ 65:112–119

    Article  CAS  Google Scholar 

  77. Tachibana A, Nakamura K, Sakata K, Morisaki T (1999) Int J Quantum Chem 74:669–679

    Article  CAS  Google Scholar 

  78. Ghosh DC, Islam N (2011) Int J Quantum Chem 111:40–51

    Article  CAS  Google Scholar 

  79. Ghosh DC, Islam N (2011) Int J Quantum Chem 111:1961–1969

    Article  CAS  Google Scholar 

  80. Putz MV (2011) Int J Chem Model 3:371–384

    CAS  Google Scholar 

  81. Pearson RG (1973) Hard and soft acids and bases. Dowden, Hutchinson & Ross, Stroudsberg

    Google Scholar 

  82. Pearson RG (1990) Coord Chem Rev 100:403–425

    Article  CAS  Google Scholar 

  83. Pearson RG (1997) Chemical hardness. Wiley-VCH, Weinheim

    Book  Google Scholar 

  84. Chattaraj PK, Sengupta S (1996) J Phys Chem 100:16129–16130

    Article  Google Scholar 

  85. Chattaraj PK, Maiti B (2003) J Am Chem Soc 125:2705–2710

    Article  CAS  Google Scholar 

  86. Chattaraj PK, Sarkar U, Roy DR (2007) J Chem Educ 84:354–358

    Article  CAS  Google Scholar 

  87. Putz MV, Russo N, Sicilia E (2004) J Comput Chem 25:994–1003

    Article  CAS  Google Scholar 

  88. Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1854–1855

    Article  Google Scholar 

  89. Chattaraj PK, Liu GH, Parr RG (1995) Chem Phys Lett 237:171–176

    Article  CAS  Google Scholar 

  90. Putz MV (2008) MATCH Commun Math Comput Chem 60:845–868

    Google Scholar 

  91. Chermette H (1999) J Comp Chem 20:129–154

    Article  CAS  Google Scholar 

  92. Putz MV (2008) Int J Mol Sci 9:1050–1095

    Article  CAS  Google Scholar 

  93. Putz MV (2011) In: Putz MV (ed) Carbon bonding and structures: advances in physics and chemistry. Springer, London, pp 1–32

    Google Scholar 

  94. Putz MV (2011) In: Putz MV (ed) Quantum frontiers of atoms and molecules. Nova Science, New York, pp 251–270

    Google Scholar 

  95. Putz MV (2012) In: Roy AK (ed) Theoretical and computational developments in modern density functional theory, chap 17. Nova Science, New York

    Google Scholar 

  96. Born M, Oppenheimer R (1927) Ann Physik (Leipzig) 84:457–484

    Article  CAS  Google Scholar 

  97. Buckingham AD, Fowler PW, Galwas PA (1987) Chem Phys 112:1–14

    Article  CAS  Google Scholar 

  98. Slater JC (1929) Phys Rev 34:1293–1322

    Article  CAS  Google Scholar 

  99. Pauli W (1940) Phys Rev 58:716–722

    Article  Google Scholar 

  100. Löwdin PO (1955) Phys Rev 97:1474–1489

    Article  Google Scholar 

  101. Cramer CJ (2002) Essentials of computational chemistry. Wiley, Chichester

    Google Scholar 

  102. Jensen F (2007) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  103. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157–173

    Article  CAS  Google Scholar 

  104. Roos BO, Sadlej AJ, Siegbahn PEM (1982) Phys Rev A 26:1192–1199

    Article  CAS  Google Scholar 

  105. Roos BO, Malmqvist PÅ (2004) Phys Chem Chem Phys 6:2919–2927

    Article  CAS  Google Scholar 

  106. Hückel E (1931) Z Phys 71:204–286

    Google Scholar 

  107. Hückel E (1931) Z Phys 72:310–337

    Article  Google Scholar 

  108. Parr RG, Craig DP, Ross IG (1950) J Chem Phys 18:1561–1563

    Article  CAS  Google Scholar 

  109. Roothaan CCJ (1951) Rev Mod Phys 23:69–89

    Article  CAS  Google Scholar 

  110. Roothaan CCJ (1958) J Chem Phys 28:982–983

    Article  Google Scholar 

  111. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1919

    Article  CAS  Google Scholar 

  112. Roothaan CCJ, Detrich JH (1983) Phys Rev A 27:29–56

    Article  CAS  Google Scholar 

  113. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–35975

    Article  CAS  Google Scholar 

  114. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  115. Ohlinger WS, Klunzinger PE, Deppmeier BJ, Hehre WJ (2009) J Phys Chem A 113:2165–2175

    Article  CAS  Google Scholar 

  116. Heitler W, London F (1927) Z Phys 44:455–472

    Article  CAS  Google Scholar 

  117. Hartree DR (1957) The calculation of atomic structures. Wiley, New York

    Google Scholar 

  118. Pople JA, Nesbet RK (1954) J Chem Phys 22:571–572

    Article  CAS  Google Scholar 

  119. Roothaan CCJ (1960) Rev Mod Phys 32:179–185

    Article  Google Scholar 

  120. Slater JC (1963) Theory of molecules and solids, vol 1, Electronic structure of molecules. McGraw-Hill, New York

    Google Scholar 

  121. Corongiu G (2007) J Phys Chem A 111:5333–5342

    Article  CAS  Google Scholar 

  122. Glaesemann KR, Schmidt MW (2010) J Phys Chem A 114:8772–8777

    Article  CAS  Google Scholar 

  123. Pariser R, Parr RG (1953) J Chem Phys 21:466–471

    Article  CAS  Google Scholar 

  124. Pople JA (1953) Trans Faraday Soc 49:1375–1385

    Article  CAS  Google Scholar 

  125. Streitwieser A (1961) Molecular orbital theory for organic chemists. Wiley, New York

    Google Scholar 

  126. Young D (2001) Computational chemistry: a practical guide for applying techniques to real world problems. Wiley, New York

    Google Scholar 

  127. Beaudry CM, Malerich JP, Trauner D (2005) Chem Rev 105:4757–4778

    Article  CAS  Google Scholar 

  128. Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Nature 446:423–427

    Article  CAS  Google Scholar 

  129. Woodward RB, Hoffmann R (1965) J Am Chem Soc 87:395–397

    Article  CAS  Google Scholar 

  130. Hoffmann R, Woodward RB (1968) Acc Chem Res 1:17–22

    Article  CAS  Google Scholar 

  131. Thomas LH (1927) Proc Camb Philos Soc 23:542–548

    Article  CAS  Google Scholar 

  132. Fermi E (1927) Rend Accad Naz Lincei 6:602–607

    CAS  Google Scholar 

  133. Teller E (1962) Rev Mod Phys 34:627–631

    Article  CAS  Google Scholar 

  134. Balàzs N (1967) Phys Rev 156:42–47

    Article  Google Scholar 

  135. Lieb EH, Simon B (1977) Adv Math 23:22–116

    Article  Google Scholar 

  136. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  137. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  138. Dreizler RM, Gross EKU (1990) Density functional theory. Springer, Heidelberg

    Book  Google Scholar 

  139. March NH (1991) Electron density theory of many-electron systems. Academic, New York

    Google Scholar 

  140. Koch W, Holthausen MC (2002) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  141. Fiolhais C, Nogueira F, Marques M (eds) (2003) A primer in density functional theory. Springer, Berlin

    Google Scholar 

  142. Richard MM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, New York

    Google Scholar 

  143. Kohanoff J (2006) Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge University Press, Cambridge

    Google Scholar 

  144. Sholl D, Steckel JA (2009) Density Functional Theory: A Practical introduction. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  145. Bokhan D, Bartlett RJ (2006) Phys Rev A 73:022502

    Article  CAS  Google Scholar 

  146. Derosa PA (2009) J Comput Chem 30:1220–1228

    Article  CAS  Google Scholar 

  147. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  148. Burke K, Werschnik J, Gross EKU (2005) J Chem Phys 123:062206

    Article  CAS  Google Scholar 

  149. March NH, Rubio A, Alonso JA (1999) J Phys B 32:2173–2179

    Article  CAS  Google Scholar 

  150. Besley NA, Peach MJG, Tozer DJ (2009) Phys Chem Chem Phys 11:10350–10358

    Article  CAS  Google Scholar 

  151. Ploetner J, Tozer DJ, Dreuw A (2010) J Chem Theory Comput 6:2315–2324

    Article  CAS  Google Scholar 

  152. Nesbet RK (2002) Variational principles and methods in theoretical physics and chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  153. Capelle K (2010) A bird’s-eye view of density-functional theory. arXiv:cond-mat/0211443v5

    Google Scholar 

  154. Bartlett RJ, Musial M (2007) Rev Mod Phys 79:291–352

    Article  CAS  Google Scholar 

  155. Bartlett RJ, Grabowski I, Hirata S, Ivanov S (2004) J Chem Phys 122:034104

    Article  CAS  Google Scholar 

  156. Bartlett RJ, Lotrich VF, Schweigert IV (2005) J Chem Phys 123:062205

    Article  CAS  Google Scholar 

  157. Geerlings P, De Proft F (2001) Chem Rev 101:1451–1464

    Article  CAS  Google Scholar 

  158. Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS, Jalkanen KJ (1996) J Phys Chem 100:2025–2034

    Article  CAS  Google Scholar 

  159. Jalkanen KJ, Suhai S (1996) Chem Phys 208:81–116

    Article  CAS  Google Scholar 

  160. Han WG, Jalkanen KJ, Elstner M, Suhai S (1998) J Phys Chem B 102:2587–2602

    Article  CAS  Google Scholar 

  161. Jalkanen KJ, Elstner M, Suhai S (2004) J Mol Struct Theochem 675:61–77

    Article  CAS  Google Scholar 

  162. Silaghi-Dumitrescu R (2006) J Inorg Biochem 100:396–402

    Article  CAS  Google Scholar 

  163. Silaghi-Dumitrescu R, Silaghi-Dumitrescu I (2006) J Inorg Biochem 100:161–166

    Article  CAS  Google Scholar 

  164. Putz MV (2010) Int J Mol Sci 11:1269–1310

    Article  CAS  Google Scholar 

  165. Dirac PAM (1929) Proc R Soc Lond A123:714–733

    Google Scholar 

  166. Löwdin PO (1950) J Chem Phys 18:365–376

    Article  Google Scholar 

  167. Löwdin PO (1993) Int J Quantum Chem 48:225–232

    Article  Google Scholar 

  168. Hoffmann R (1963) J Chem Phys 39:1397–1412

    Article  CAS  Google Scholar 

  169. Boys SF (1950) Proc R Soc Lond A200:542–554

    Google Scholar 

  170. Szabo A, Ostlund NS (1996) Modern quantum chemistry—introduction to advanced electronic structure theory. Dover, New York

    Google Scholar 

  171. Clementi E, Roetti C (1974) At Data Nucl Data Tables 14:177–478

    Article  CAS  Google Scholar 

  172. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657–2665

    Article  CAS  Google Scholar 

  173. Collins JB, Schleyer PvR, Binkley JS, Pople JA (1976) J Chem Phys 64:5142–5152

    Google Scholar 

  174. Stewart RF (1970) J Chem Phys 52:431–439

    Article  CAS  Google Scholar 

  175. Hartree DR (1928) Proc Camb Philos Soc 24:89–111

    Article  CAS  Google Scholar 

  176. Hartree DR (1928) Proc Camb Philos Soc 24:111–132

    Article  CAS  Google Scholar 

  177. Fock V (1930) Z Phys 61:126–140

    Article  Google Scholar 

  178. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5627 (Erratum: Johnson BG (1994) J Chem Phys 101:9202)

    Google Scholar 

  179. Slater JC (1974) Quantum theory of molecules and solids, vol 4. McGraw-Hill, New York

    Google Scholar 

  180. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  181. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Sing DJ, Fiolhais C (1992) Phys Rev B 46:667–6687

    Google Scholar 

  182. Senatore G, March NH (1994) Rev Mod Phys 66:445–479

    Article  Google Scholar 

  183. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  184. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  185. Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) Chem Phys Lett 197:499–505

    Article  CAS  Google Scholar 

  186. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  187. Becke AD (1997) J Chem Phys 107:8554–8561

    Article  CAS  Google Scholar 

  188. Becke AD (1993) J Chem Phys 98:5648–5653

    Article  CAS  Google Scholar 

  189. Noble D (2002) Nat Rev Mol Cell Biol 3:459–463

    Article  CAS  Google Scholar 

  190. Crampin EJ, Schnell S, McSharry PE (2004) Prog Biophys Mol Biol 86:99–112

    Google Scholar 

  191. Schnell S, Turner TE (2004) Prog Biophys Mol Biol 85:235–260

    Article  CAS  Google Scholar 

  192. Savageau MA (1999) Biochemical system analysis: a study of function and design in molecular biology. Addison-Wesley, Reading

    Google Scholar 

  193. Savageau MA (1969) J Theor Biol 25:365–369

    Article  CAS  Google Scholar 

  194. Turner TE, Schnell S, Burrage K (2004) Comput Biol Chem 28:165–198

    Article  CAS  Google Scholar 

  195. Lacrămă AM, Putz MV, Ostafe V (2008) In: Putz MV (ed) Advances in quantum chemical bonding structures. Transworld Research Network, Kerala, India, pp 389–419

    Google Scholar 

  196. Putz MV, Lacrămă AM, Ostafe V (2006) Int J Mol Sci 7:469–484

    Article  CAS  Google Scholar 

  197. Putz MV, Lacrămă AM (2007) J Optoelectron Adv Mater 9:2529–2534

    CAS  Google Scholar 

  198. Putz MV, Lacrămă AM, Ostafe V (2007) J Optoelectron Adv Mater 9:2910–2916

    Google Scholar 

  199. Putz MV, Putz AM (2011) Int J Chemoinf Chem Eng 1:42–60

    CAS  Google Scholar 

  200. Putz MV (2011) Molecules 16:3128–3145

    Article  CAS  Google Scholar 

  201. Putz MV, Putz AM (2011) In: Putz MV (ed) Quantum frontiers of atoms and molecules. Nova Science, New York, pp 539–580

    Google Scholar 

  202. Putz MV, Lacrămă AM (2007) Int J Mol Sci 8:363–391

    Article  CAS  Google Scholar 

  203. Ogihara N (2003) Mod Drug Discov 6:28–32

    CAS  Google Scholar 

  204. Dirac PAM (1944) The principles of quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  205. Putz MV, Putz AM, Barou R (2011) Int J Chem Model 3:173–190

    Google Scholar 

  206. European Chemicals Agency (2011) http://www.qsartoolbox.org

  207. Putz MV, Tudoran MA, Putz AM (2012) Int J Chem Model 4 (in press)

    Google Scholar 

  208. Schluz TW, Cronin MTD, Netzeva TI, Aptula AO (2003) J Mol Struct Theochem 622:1–22

    Article  Google Scholar 

  209. Veith GD, Broderius SJ (1990) Environ Health Perspect 87:207–211

    Article  CAS  Google Scholar 

  210. Hermes JLM (1990) Environ Health Perspect 87:219–255

    Article  Google Scholar 

  211. Scott JA (2009) The mechanism of retene toxicity in the early life stages of fish. PhD Thesis, Queen’s University, Kingston, ON

    Google Scholar 

  212. Safe S (1990) Crit Rev Toxicol 21:51–88

    Article  CAS  Google Scholar 

  213. Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Environ Health Perspect 110:451–488

    Article  CAS  Google Scholar 

  214. IPCS: International Programme on Chemical Safety (1998) Selected non-heterocyclic policyclic aromatic hydrocarbons. Environmental Health Criteria 202. http://www.inchem.org/documents/ehc/ehc/ehc202.htm

  215. ATSDR: Agency for Toxic Substances and Disease Registry (1995) Toxicological profile for polycyclic aromatic hydrocarbons. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=122&tid=25

  216. Ohura T (2007) Sci World 7:372–380

    Article  Google Scholar 

  217. Kitazawa A, Amagai T, Ohura T (2006) Environ Sci Technol 40:4592–4598

    Article  CAS  Google Scholar 

  218. Blackenship AL, Kannan K, Villalobos SA, Villeneuve DL, Falandysz J, Imagawa T, Jakobsson E, Giesy JP (2000) Environ Sci Technol 34:3153–3158

    Article  CAS  Google Scholar 

  219. Denison MS, Heath-Pagliuso S (1998) Bull Environ Contam Toxicol 61:557–568

    Article  CAS  Google Scholar 

  220. Hahn M (1998) Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121:23–53

    Article  CAS  Google Scholar 

  221. Bock KW, Köhle C (2006) Biochem Pharmacol 72:393–404

    Article  CAS  Google Scholar 

  222. Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP (2000) Biochem Pharmacol 59:65–85

    Article  CAS  Google Scholar 

  223. Fernandez-Salguero PM, Ward JM, Sundberg JP, Gonzales FJ (1997) Vet Pathol 34:605–614

    Article  CAS  Google Scholar 

  224. Lund AK, Goens MB, Kanagy NL, Walker MK (2003) Toxicol Appl Pharmacol 193:177–187

    Article  CAS  Google Scholar 

  225. Walisser JA, Bunder MK, Glover E, Bradfield CA (2004) Proc Natl Acad Sci USA 101:16677–16682

    Article  CAS  Google Scholar 

  226. Incardona JP, Collier TK, Scholz NL (2004) Toxicol Appl Pharmacol 196:191–205

    Article  CAS  Google Scholar 

  227. Incardona JP, Day HL, Collier TK, Scholz NL (2006) Toxicol Appl Pharmacol 217:308–321

    Article  CAS  Google Scholar 

  228. Ohura T, Morita M, Kuruto-Niwa R, Amagai T, Sakakibara H, Shimoi K (2010) Environ Toxicol 25:180–187

    CAS  Google Scholar 

  229. Nilsson UL, Oestman CE (1993) Environ Sci Technol 27:1826–1831

    Article  CAS  Google Scholar 

  230. HyperChem 7.01 (2002) Program package. Hypercube, Gainesville

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian National Council of Scientific Research (CNCS-UEFISCDI) through project TE16/2010-2013 within the PN II-RU-TE-2010-1 framework and by Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai V. Putz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Putz, M.V., Putz, AM. (2013). DFT Chemical Reactivity Driven by Biological Activity: Applications for the Toxicological Fate of Chlorinated PAHs. In: Putz, M., Mingos, D. (eds) Applications of Density Functional Theory to Biological and Bioinorganic Chemistry. Structure and Bonding, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32750-6_6

Download citation

Publish with us

Policies and ethics