Cover Similarity Based Item Set Mining

  • Marc Segond
  • Christian Borgelt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7250)


In standard frequent item set mining one tries to find item sets the support of which exceeds a user-specified threshold (minimum support) in a database of transactions. We, instead, strive to find item sets for which the similarity of the covers of the items (that is, the sets of transactions containing the items) exceeds a user-defined threshold. This approach yields a much better assessment of the association strength of the items, because it takes additional information about their occurrences into account. Starting from the generalized Jaccard index we extend our approach to a total of twelve specific similarity measures and a generalized form. In addition, standard frequent item set mining turns out to be a special case of this flexible framework. We present an efficient mining algorithm that is inspired by the well-known Eclat algorithm and its improvements. By reporting experiments on several benchmark data sets we demonstrate that the runtime penalty incurred by the more complex (but also more informative) item set assessment is bearable and that the approach yields high quality and more useful item sets.


  1. 1.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. 20th Int. Conf. on Very Large Databases, VLDB 1994, Santiago de Chile, pp. 487–499. Morgan Kaufmann, San Mateo (1994)Google Scholar
  2. 2.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast Discovery of Association Rules. In: [13], pp. 307–328Google Scholar
  3. 3.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. School of Information and Computer Science, University of California at Irvine, CA, USA (2007),
  4. 4.
    Baroni-Urbani, C., Buser, M.W.: Similarity of Binary Data. Systematic Zoology 25(3), 251–259 (1976)CrossRefGoogle Scholar
  5. 5.
    Bayardo, R., Goethals, B., Zaki, M.J. (eds.): Proc. Workshop Frequent Item Set Mining Implementations, FIMI 2004, Brighton, UK, Aachen, Germany. CEUR Workshop Proceedings, vol. 126 (2004),
  6. 6.
    Borgelt, C., Wang, X.: SaM: A Split and Merge Algorithm for Fuzzy Frequent Item Set Mining. In: Proc.13th Int. Fuzzy Systems Association World Congress and 6th Conf. of the European Society for Fuzzy Logic and Technology, IFSA/EUSFLAT 2009. IFSA/EUSFLAT Organization Committee, Lisbon (2009)Google Scholar
  7. 7.
    Cha, S.-H., Tappert, C.C., Yoon, S.: Enhancing Binary Feature Vector Similarity Measures. J. Pattern Recognition Research 1, 63–77 (2006)CrossRefGoogle Scholar
  8. 8.
    Choi, S.-S., Cha, S.-H., Tappert, C.C.: A Survey of Binary Similarity and Distance Measures. Journal of Systemics, Cybernetics and Informatics 8(1), 43–48 (2010); Int. Inst. of Informatics and Systemics, Caracas, Venezuela (2010)Google Scholar
  9. 9.
    Czekanowski, J.: Zarys metod statystycznych w zastosowaniu do antropologii (An Outline of Statistical Methods Applied in Anthropology). Towarzystwo Naukowe Warszawskie, Warsaw, Poland (1913)Google Scholar
  10. 10.
    Dice, L.R.: Measures of the Amount of Ecologic Association between Species. Ecology 26, 297–302 (1945)CrossRefGoogle Scholar
  11. 11.
    Dunn, G., Everitt, B.S.: An Introduction to Mathematical Taxonomy. Cambridge University Press, Cambirdge (1982)zbMATHGoogle Scholar
  12. 12.
    Faith, D.P.: Asymmetric Binary Similarity Measures. Oecologia 57(3), 287–290 (1983)CrossRefGoogle Scholar
  13. 13.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI Press / MIT Press, Cambridge (1996)Google Scholar
  14. 14.
    Goethals, B. (ed.): Frequent Item Set Mining Dataset Repository. University of Helsinki, Finland (2004),
  15. 15.
    Goethals, B., Zaki, M.J. (eds.): Proc. Workshop Frequent Item Set Mining Implementations, FIMI 2003, Melbourne, FL, USA. CEUR Workshop Proceedings 90, Aachen, Germany (2003),
  16. 16.
    Grahne, G., Zhu, J.: Efficiently Using Prefix-trees in Mining Frequent Itemsets. In: Proc. Workshop Frequent Item Set Mining Implementations, FIMI, Melbourne, FL [15] (2003)Google Scholar
  17. 17.
    Grahne, G., Zhu, J.: Reducing the Main Memory Consumptions of FPmax* and FPclose. In: Proc. Workshop Frequent Item Set Mining Implementations, FIMI, Brighton, UK [5] (2004)Google Scholar
  18. 18.
    Gower, J.C., Legendre, P.: Metric and Euclidean Properties of Dissimilarity Coefficients. Journal of Classification 3, 5–48 (1986)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Han, J., Pei, H., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Proc. Conf. on the Management of Data, SIGMOD 2000, Dallas, TX, pp. 1–12. ACM Press, New York (2000)Google Scholar
  20. 20.
    Hamann, V.: Merkmalbestand und Verwandtschaftsbeziehungen der Farinosae. Ein Beitrag zum System der Monokotyledonen. Willdenowia 2, 639–768 (1961)Google Scholar
  21. 21.
    Hamming, R.V.: Error Detecting and Error Correcting Codes. Bell Systems Tech. Journal 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  23. 23.
    Kohavi, R., Bradley, C.E., Frasca, B., Mason, L., Zheng, Z.: KDD-Cup 2000 Organizers’ Report: Peeling the Onion. SIGKDD Exploration 2(2), 86–93 (2000)CrossRefGoogle Scholar
  24. 24.
    Kötter, T., Berthold, M.R.: Concept Detection. In: Proc. 8th Conf. on Computing and Philosophy, ECAP 2010. University of Munich, Munich (2010)Google Scholar
  25. 25.
    Kulczynski, S.: Classe des Sciences Mathématiques et Naturelles. Bulletin Int. de l’Acadamie Polonaise des Sciences et des Lettres Série B (Sciences Naturelles) (Supp. II), 57–203 (1927)Google Scholar
  26. 26.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Itemsets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  27. 27.
    Rogers, D.J., Tanimoto, T.T.: A Computer Program for Classifying Plants. Science 132, 1115–1118 (1960)CrossRefGoogle Scholar
  28. 28.
    Russel, P.F., Rao, T.R.: On Habitat and Association of Species of Anopheline Larvae in South-eastern Madras. J. Malaria Institute 3, 153–178 (1940)Google Scholar
  29. 29.
    Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. Freeman Books, San Francisco (1973)zbMATHGoogle Scholar
  30. 30.
    Sokal, R.R., Michener, C.D.: A Statistical Method for Evaluating Systematic Relationships. University of Kansas Scientific Bulletin 38, 1409–1438 (1958)Google Scholar
  31. 31.
    Sokal, R.R., Sneath, P.H.A.: Principles of Numerical Taxonomy. Freeman Books, San Francisco (1963)zbMATHGoogle Scholar
  32. 32.
    Sørensen, T.: A Method of Establishing Groups of Equal Amplitude in Plant Sociology based on Similarity of Species and its Application to Analyses of the Vegetation on Danish Commons. Biologiske Skrifter / Kongelige Danske Videnskabernes Selskab 5(4), 1–34 (1948)Google Scholar
  33. 33.
    Tanimoto, T.T.: IBM Internal Report, November 17 (1957)Google Scholar
  34. 34.
    Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets. Proc. Workshop Frequent Item Set Mining Implementations, FIMI 2004, Brighton, UK. CEUR Workshop Proceedings 126, Aachen, Germany (2004)Google Scholar
  35. 35.
    Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 3: Collaboration of Array, Bitmap and Prefix Tree for Frequent Itemset Mining. Proc. 1st Open Source Data Mining on Frequent Pattern Mining Implementations, OSDM 2005, Chicago, IL, pp. 77–86. ACM Press, New York (2005)Google Scholar
  36. 36.
    Webb, G.I., Zhang, S.: k-Optimal-Rule-Discovery. Data Mining and Knowledge Discovery 10(1), 39–79 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Webb, G.I.: Discovering Significant Patterns. Machine Learning 68(1), 1–33 (2007)CrossRefGoogle Scholar
  38. 38.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast Discovery of Association Rules. In: Proc. 3rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 1997, Newport Beach, CA, pp. 283–296. AAAI Press, Menlo Park (1997)Google Scholar
  39. 39.
    Zaki, M.J., Gouda, K.: Fast Vertical Mining Using Diffsets. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2003, Washington, DC, pp. 326–335. ACM Press, New York (2003)Google Scholar
  40. 40.
    Zheng, Z., Kohavi, R., Mason, L.: Real World Performance of Association Rule Algorithms. In: Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2001, San Francisco, CA, ACM Press, New York (2001)Google Scholar
  41. 41.
    Synthetic Data Generation Code for Associations and Sequential Patterns. Intelligent Information Systems, IBM Almaden Research Center,

Copyright information

© The Author(s) 2012

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Marc Segond
    • 1
  • Christian Borgelt
    • 1
  1. 1.European Centre for Soft ComputingMieresSpain

Personalised recommendations