On the Integration of Graph Exploration and Data Analysis: The Creative Exploration Toolkit

  • Stefan Haun
  • Tatiana Gossen
  • Andreas Nürnberger
  • Tobias Kötter
  • Kilian Thiel
  • Michael R. Berthold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7250)


To enable discovery in large, heterogenious information networks a tool is needed that allows exploration in changing graph structures and integrates advanced graph mining methods in an interactive visualization framework. We present the Creative Exploration Toolkit (CET), which consists of a state-of-the-art user interface for graph visualization designed towards explorative tasks and support tools for integration and communication with external data sources and mining tools, especially the data-mining platform KNIME. All parts of the interface can be customized to fit the requirements of special tasks, including the use of node type dependent icons, highlighting of nodes and clusters. Through an evaluation we have shown the applicability of CET for structure-based analysis tasks.


Knowledge Discovery Graph Visualization Association Chain Usability Assessment External Data Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berthold, M.R. (ed.): Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Data Analysis, Machine Learning and Applications - Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation e.V. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 319–326. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Cook, D.J., Holder, J.B. (eds.): Mining Graph Data. John Wiley & Sons, Inc., Hoboken (2007)zbMATHGoogle Scholar
  4. 4.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: An annotated bibliography. Computational Geometry: Theory and Applications 4(5), 235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Didimo, W., Liotta, G.: Mining Graph Data (Graph Visualization and Data Mining), ch.3, pp. 35–63. John Wiley & Sons, Inc., Hoboken (2007)Google Scholar
  6. 6.
    Dweyer, T., Rolletschek, H., Schreiber, F.: Representing experimental biological data in metabolic networks. In: 2nd Asia-Pacific Bioinformatics Conference (APBC 2004). CRPIT, vol. 29, pp. 13–20. ACS, Sydney (2004)Google Scholar
  7. 7.
    Eades, P.: A heuristic for graph drawing. Congr. Numer. 42, 149–160 (1984)MathSciNetGoogle Scholar
  8. 8.
    Gansner, E.R., Hu, Y.: Efficient, proximity-preserving node overlap removal. J. Graph Algorithms Appl. 14(1), 53–74 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gossen, T., Nitsche, M., Haun, S., Nürnberger, A.: Data Exploration for Knowledge Discovery: A brief Overview of Tools and Evaluation Methods. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250, pp. 287–300. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Haller, H., Kugel, F., Völkel, M.: iMapping Wikis - Towards a Graphical Environment for Semantic Knowledge Management. In: SemWiki (2006)Google Scholar
  11. 11.
    Haun, S., Nürnberger, A.: Supporting exploratory search by user-centered interactive data mining. In: SIGIR Workshop Information Retrieval for E-Discovery (SIRE) (2011)Google Scholar
  12. 12.
    Hearst, M.: Search user interfaces. Cambridge University Press (2009)Google Scholar
  13. 13.
    Herman, I., Melançon, G., de Ruiter, M.M., Delest, M.: Latour – A Tree Visualisation System. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 392–399. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Herman, I., Melancon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)CrossRefGoogle Scholar
  15. 15.
    Koren, Y., Çivril, A.: The Binary Stress Model for Graph Drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 193–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Payne, S.J.: Mental models in human-computer interaction. In: Sears, A., Jacko, J.A. (eds.) The Human-Computer Interaction Handbook, pp. 63–75. Lawrence Erlbaum Associates (2008)Google Scholar
  17. 17.
    Saint-Andre, P.: Streaming XML with Jabber/XMPP. IEEE Internet Computing 9(5), 82–89 (2005)CrossRefGoogle Scholar
  18. 18.
    Tamassia, R.: Advances in the theory and practice of graph drawing. Theoretical Computer Science 17, 235–254 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2012 2012

Authors and Affiliations

  • Stefan Haun
    • 1
  • Tatiana Gossen
    • 1
  • Andreas Nürnberger
    • 1
  • Tobias Kötter
    • 2
  • Kilian Thiel
    • 2
  • Michael R. Berthold
    • 2
  1. 1.Data and Knowledge Engineering Group, Faculty of Computer ScienceOtto-von-Guericke-UniversityGermany
  2. 2.Nycomed-Chair for Bioinformatics and Information MiningUniversity of KonstanzGermany

Personalised recommendations