Skip to main content

Regulation of ARE-mRNA Stability by Cellular Signaling: Implications for Human Cancer

  • Chapter
  • First Online:
RNA and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 158))

Abstract

During recent years, it has become clear that regulation of mRNA stability is an important event in the control of gene expression. The stability of a large class of mammalian mRNAs is regulated by AU-rich elements (AREs) located in the mRNA 3′ UTRs. mRNAs with AREs are inherently labile but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly regulate their stability can therefore lead to uncontrolled expression of factors associated with cell proliferation and has been implicated in several human cancers. A number of transfactors that recognize AREs and regulate the translation and degradation of ARE-mRNAs have been identified. These transfactors are regulated by signal transduction pathways, which are often misregulated in cancers. This chapter focuses on the function of ARE-binding proteins with an emphasis on their regulation by signaling pathways and the implications for human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20:465–470

    PubMed  CAS  Google Scholar 

  2. Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126

    PubMed  CAS  Google Scholar 

  3. Audic Y, Hartley RS (2004) Post-transcriptional regulation in cancer. Biol Cell 96:479–498

    PubMed  CAS  Google Scholar 

  4. Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A (2003) Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol 195:356–372

    PubMed  CAS  Google Scholar 

  5. Eberhardt W, Doller A, el Akool S, Pfeilschifter J (2007) Modulation of mRNA stability as a novel therapeutic approach. Pharmacol Ther 114:56–73

    PubMed  CAS  Google Scholar 

  6. Lopez de Silanes I, Quesada MP, Esteller M (2007) Aberrant regulation of messenger RNA 3’-untranslated region in human cancer. Cell Oncol 29:1–17

    Google Scholar 

  7. Sanduja S, Blanco FF, Dixon DA (2010) The roles of TTP and BRF proteins in regulated mRNA decay. WIREs RNA 2:42–57

    Google Scholar 

  8. Reznik B, Lykke-Andersen J (2010) Regulated and quality-control mRNA turnover pathways in eukaryotes. Biochem Soc Trans 38:1506–1510

    PubMed  CAS  Google Scholar 

  9. Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A (1986) Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A 83:1670–1674

    PubMed  CAS  Google Scholar 

  10. Chen CY, Chen TM, Shyu AB (1994) Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Mol Cell Biol 14:416–426

    PubMed  Google Scholar 

  11. Chen CY, Xu N, Shyu AB (1995) mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol 15:5777–5788

    PubMed  CAS  Google Scholar 

  12. DeMaria CT, Brewer G (1996) AUF1 binding affinity to A + U-rich elements correlates with rapid mRNA degradation. J Biol Chem 271:12179–12184

    PubMed  CAS  Google Scholar 

  13. Fan XC, Steitz JA (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 17:3448–3460

    PubMed  CAS  Google Scholar 

  14. Laroia G, Cuesta R, Brewer G, Schneider RJ (1999) Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 284:499–502

    PubMed  CAS  Google Scholar 

  15. Peng SS, Chen CY, Xu N, Shyu AB (1998) RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 17:3461–3470

    PubMed  CAS  Google Scholar 

  16. Shaw G, Kamen R (1986) A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667

    PubMed  CAS  Google Scholar 

  17. Treisman R (1985) Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5’ element and c-fos 3’ sequences. Cell 42:889–902

    PubMed  CAS  Google Scholar 

  18. Xu N, Chen CY, Shyu AB (1997) Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 17:4611–4621

    PubMed  CAS  Google Scholar 

  19. Xu N, Chen CY, Shyu AB (2001) Versatile role for hnRNP D isoforms in the differential regulation of cytoplasmic mRNA turnover. Mol Cell Biol 21:6960–6971

    PubMed  CAS  Google Scholar 

  20. Bakheet T, Williams BR, Khabar KS (2006) ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 34:D111–D114

    PubMed  CAS  Google Scholar 

  21. Gherzi R, Lee KY, Briata P et al (2004) A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 14:571–583

    PubMed  CAS  Google Scholar 

  22. Moraes KC, Wilusz CJ, Wilusz J (2006) CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA 12:1084–1091

    PubMed  CAS  Google Scholar 

  23. Stoecklin G, Lu M, Rattenbacher B, Moroni C (2003) A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Mol Cell Biol 23:3506–3515

    PubMed  CAS  Google Scholar 

  24. Brown CY, Lagnado CA, Goodall GJ (1996) A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A + U-rich elements. Proc Natl Acad Sci U S A 93:13721–13725

    PubMed  CAS  Google Scholar 

  25. Claffey KP, Shih SC, Mullen A et al (1998) Identification of a human VPF/VEGF 3’ untranslated region mediating hypoxia-induced mRNA stability. Mol Biol Cell 9:469–481

    PubMed  CAS  Google Scholar 

  26. Paschoud S, Dogar AM, Kuntz C, Grisoni-Neupert B, Richman L, Kuhn LC (2006) Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol 26:8228–8241

    PubMed  CAS  Google Scholar 

  27. Putland RA, Sassinis TA, Harvey JS et al (2002) RNA destabilization by the granulocyte colony-stimulating factor stem-loop destabilizing element involves a single stem-loop that promotes deadenylation. Mol Cell Biol 22:1664–1673

    PubMed  CAS  Google Scholar 

  28. Wilson GM, Sutphen K, Moutafis M, Sinha S, Brewer G (2001) Structural remodeling of an A + U-rich RNA element by cation or AUF1 binding. J Biol Chem 276:38400–38409

    PubMed  CAS  Google Scholar 

  29. Nair AP, Hahn S, Banholzer R, Hirsch HH, Moroni C (1994) Cyclosporin A inhibits growth of autocrine tumour cell lines by destabilizing interleukin-3 mRNA. Nature 369:239–242

    PubMed  CAS  Google Scholar 

  30. Schuler GD, Cole MD (1988) GM-CSF and oncogene mRNA stabilities are independently regulated in trans in a mouse monocytic tumor. Cell 55:1115–1122

    PubMed  CAS  Google Scholar 

  31. Chen CY, Gherzi R, Ong SE et al (2001) AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107:451–464

    PubMed  CAS  Google Scholar 

  32. Chou CF, Mulky A, Maitra S et al (2006) Tethering KSRP, a decay-promoting AU-rich element-binding protein, to mRNAs elicits mRNA decay. Mol Cell Biol 26:3695–3706

    PubMed  CAS  Google Scholar 

  33. Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19:351–361

    PubMed  CAS  Google Scholar 

  34. Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JL (2010) MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem 285:27590–27600

    PubMed  CAS  Google Scholar 

  35. Clement SL, Scheckel C, Stoecklin G, Lykke-Andersen J (2011) Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 31:256–266

    PubMed  CAS  Google Scholar 

  36. Kawai T, Lal A, Yang X, Galban S, Mazan-Mamczarz K, Gorospe M (2006) Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol Cell Biol 26:3295–3307

    PubMed  CAS  Google Scholar 

  37. Lal A, Abdelmohsen K, Pullmann R et al (2006) Posttranscriptional derepression of GADD45alpha by genotoxic stress. Mol Cell 22:117–128

    PubMed  CAS  Google Scholar 

  38. Liao B, Hu Y, Brewer G (2007) Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat Struct Mol Biol 14:511–518

    PubMed  CAS  Google Scholar 

  39. Lopez de Silanes I, Fan J, Galban CJ, Spencer RG, Becker KG, Gorospe M (2004) Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. Gene Expr 12:49–59

    Google Scholar 

  40. Mazan-Mamczarz K, Galban S (2003) Lopez de Silanes I, et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci U S A 100:8354–8359

    PubMed  CAS  Google Scholar 

  41. Mazan-Mamczarz K, Lal A, Martindale JL, Kawai T, Gorospe M (2006) Translational repression by RNA-binding protein TIAR. Mol Cell Biol 26:2716–2727

    PubMed  CAS  Google Scholar 

  42. Piecyk M, Wax S, Beck AR et al (2000) TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J 19:4154–4163

    PubMed  CAS  Google Scholar 

  43. Wang W, Caldwell MC, Lin S, Furneaux H, Gorospe M (2000) HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J 19:2340–2350

    PubMed  CAS  Google Scholar 

  44. Wang W, Furneaux H, Cheng H et al (2000) HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 20:760–769

    PubMed  CAS  Google Scholar 

  45. Kuwano Y, Pullmann R Jr, Marasa BS et al (2010) NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 38:225–238

    PubMed  CAS  Google Scholar 

  46. Bergalet J, Fawal M, Lopez C et al (2011) HuR-Mediated Control of C/EBP{beta} mRNA Stability and Translation in ALK-Positive Anaplastic Large Cell Lymphomas. Mol Cancer Res 9:485–496

    PubMed  CAS  Google Scholar 

  47. Ishimaru D, Ramalingam S, Sengupta TK et al (2009) Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol Cancer Res 7:1354–1366

    PubMed  CAS  Google Scholar 

  48. Anderson JR, Mukherjee D, Muthukumaraswamy K, Moraes KC, Wilusz CJ, Wilusz J (2006) Sequence-specific RNA binding mediated by the RNase PH domain of components of the exosome. RNA 12:1810–1816

    PubMed  CAS  Google Scholar 

  49. Mukherjee D, Gao M, O’Connor JP et al (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21:165–174

    PubMed  CAS  Google Scholar 

  50. Abdelmohsen K, Pullmann R Jr, Lal A et al (2007) Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 25:543–557

    PubMed  CAS  Google Scholar 

  51. Atasoy U, Curry SL (2003) Lopez de Silanes I, et al. Regulation of eotaxin gene expression by TNF-alpha and IL-4 through mRNA stabilization: involvement of the RNA-binding protein HuR. J Immunol 171:4369–4378

    PubMed  CAS  Google Scholar 

  52. Doller A, Huwiler A, Muller R, Radeke HH, Pfeilschifter J, Eberhardt W (2007) Protein Kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR: implications for posttranscriptional regulation of cyclooxygenase-2. Mol Biol Cell 18:2137–2148

    PubMed  CAS  Google Scholar 

  53. He C, Schneider R (2006) 14–3-3sigma is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay. EMBO J 25:3823–3831

    PubMed  CAS  Google Scholar 

  54. Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, Gorospe M (2004) Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 23:3092–3102

    PubMed  CAS  Google Scholar 

  55. Ming XF, Stoecklin G, Lu M, Looser R, Moroni C (2001) Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 21:5778–5789

    PubMed  CAS  Google Scholar 

  56. Pascale A, Amadio M, Scapagnini G et al (2005) Neuronal ELAV proteins enhance mRNA stability by a PKCalpha-dependent pathway. Proc Natl Acad Sci U S A 102:12065–12070

    PubMed  CAS  Google Scholar 

  57. Sun L, Stoecklin G, Van Way S et al (2007) Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J Biol Chem 282:3766–3777

    PubMed  CAS  Google Scholar 

  58. Tran H, Maurer F, Nagamine Y (2003) Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol 23:7177–7188

    PubMed  CAS  Google Scholar 

  59. Wang W, Yang X, Kawai T et al (2004) AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1: involvement in the nuclear import of RNA-binding protein HuR. J Biol Chem 279:48376–48388

    PubMed  CAS  Google Scholar 

  60. Winzen R, Kracht M, Ritter B et al (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18:4969–4980

    PubMed  CAS  Google Scholar 

  61. Yang X, Wang W, Fan J et al (2004) Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. J Biol Chem 279:49298–49306

    PubMed  CAS  Google Scholar 

  62. Qian X, Ning H, Zhang J, et al (2011) Posttranscriptional Regulation of IL-23 Expression by IFN-{gamma} through Tristetraprolin. J Immunol 186:6454–6464

    PubMed  CAS  Google Scholar 

  63. Lee WH, Lee HH, Vo MT et al (2011) Casein kinase 2 regulates the mRNA-destabilizing activity of tristetraprolin. J Biol Chem 286:21577–21587

    PubMed  CAS  Google Scholar 

  64. Schaljo B, Kratochvill F, Gratz N et al (2009) Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10. J Immunol 183:1197–1206

    PubMed  CAS  Google Scholar 

  65. Tudor C, Marchese FP, Hitti E et al (2009) The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages. FEBS Lett 583:1933–1938

    PubMed  CAS  Google Scholar 

  66. Suswam E, Li Y, Zhang X et al (2008) Tristetraprolin down-regulates interleukin-8 and vascular endothelial growth factor in malignant glioma cells. Cancer Res 68:674–682

    PubMed  CAS  Google Scholar 

  67. Datta S, Biswas R, Novotny M et al (2008) Tristetraprolin regulates CXCL1 (KC) mRNA stability. J Immunol 180:2545–2552

    PubMed  CAS  Google Scholar 

  68. Ronkina N, Menon MB, Schwermann J et al (2010) MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochem Pharmacol 80:1915–1920

    PubMed  CAS  Google Scholar 

  69. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    PubMed  CAS  Google Scholar 

  70. Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    PubMed  CAS  Google Scholar 

  71. Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743–1748

    PubMed  CAS  Google Scholar 

  72. Jacobsen A, Wen J, Marks DS, Krogh A (2010) Signatures of RNA binding proteins globally coupled to effective microRNA target sites. Genome Res 20:1010–1019

    PubMed  CAS  Google Scholar 

  73. Glorian V, Maillot G, Poles S, Iacovoni JS, Favre G, Vagner S (2011) HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis. Cell Death Differ 18:1692–1701

    PubMed  CAS  Google Scholar 

  74. Leibovich L, Mandel-Gutfreund Y, Yakhini Z (2010) A structural-based statistical approach suggests a cooperative activity of PUM1 and miR-410 in human 3’-untranslated regions. Silence 1:17

    PubMed  Google Scholar 

  75. Blackshear PJ, Phillips RS, Ghosh S, Ramos SB, Richfield EK, Lai WS (2005) Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the Tristetraprolin family of CCCH tandem zinc finger proteins. Biol Reprod 73:297–307

    PubMed  CAS  Google Scholar 

  76. Blackshear PJ (2002) Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 30:945–952

    PubMed  CAS  Google Scholar 

  77. DuBois RN, McLane MW, Ryder K, Lau LF, Nathans D (1990) A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J Biol Chem 265:19185–19191

    PubMed  CAS  Google Scholar 

  78. Lai WS, Stumpo DJ, Blackshear PJ (1990) Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J Biol Chem 265:16556–16563

    PubMed  CAS  Google Scholar 

  79. Ma Q, Herschman HR (1991) A corrected sequence for the predicted protein from the mitogen-inducible TIS11 primary response gene. Oncogene 6:1277–1278

    PubMed  CAS  Google Scholar 

  80. Varnum BC, Lim RW, Kujubu DA et al (1989) Granulocyte-macrophage colony-stimulating factor and tetradecanoyl phorbol acetate induce a distinct, restricted subset of primary-response TIS genes in both proliferating and terminally differentiated myeloid cells. Mol Cell Biol 9:3580–3583

    PubMed  CAS  Google Scholar 

  81. Baou M, Jewell A, Murphy JJ (2009) TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009:634520

    PubMed  Google Scholar 

  82. Lai WS, Blackshear PJ (2001) Interactions of CCCH zinc finger proteins with mRNA: tristetraprolin-mediated AU-rich element-dependent mRNA degradation can occur in the absence of a poly(A) tail. J Biol Chem 276:23144–23154

    PubMed  CAS  Google Scholar 

  83. Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ (2000) Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 275:17827–17837

    PubMed  CAS  Google Scholar 

  84. Stoecklin G, Colombi M, Raineri I et al (2002) Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J 21:4709–4718

    PubMed  CAS  Google Scholar 

  85. Lee HH, Vo MT, Kim HJ et al (2010) Stability of the LATS2 tumor suppressor gene is regulated by tristetraprolin. J Biol Chem 285:17329–17337

    PubMed  CAS  Google Scholar 

  86. Lee HH, Son YJ, Lee WH et al (2010) Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer 126:1817–1827

    PubMed  CAS  Google Scholar 

  87. Lai WS, Kennington EA, Blackshear PJ (2002) Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 277:9606–9613

    PubMed  CAS  Google Scholar 

  88. Marderosian M, Sharma A, Funk AP et al (2006) Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene 25:6277–6290

    PubMed  CAS  Google Scholar 

  89. Al-Souhibani N, Al-Ahmadi W, Hesketh JE, Blackshear PJ, Khabar KS (2010) The RNA-binding zinc-finger protein tristetraprolin regulates AU-rich mRNAs involved in breast cancer-related processes. Oncogene 29:4205–4215

    PubMed  CAS  Google Scholar 

  90. Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ (2006) Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol Cell Biol 26:9196–9208

    PubMed  CAS  Google Scholar 

  91. Sandler H, Kreth J, Timmers HT, Stoecklin G (2011) Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39:4373–4386

    PubMed  CAS  Google Scholar 

  92. Franks TM, Lykke-Andersen J (2007) TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev 21:719–735

    PubMed  CAS  Google Scholar 

  93. Stumpo DJ, Byrd NA, Phillips RS et al (2004) Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol 24:6445–6455

    PubMed  CAS  Google Scholar 

  94. Ramos SB, Stumpo DJ, Kennington EA et al (2004) The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131:4883–4893

    PubMed  CAS  Google Scholar 

  95. Bell SE, Sanchez MJ, Spasic-Boskovic O et al (2006) The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Dev Dyn 235:3144–3155

    PubMed  CAS  Google Scholar 

  96. Taylor GA, Carballo E, Lee DM et al (1996) A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4:445–454

    PubMed  CAS  Google Scholar 

  97. Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281:1001–1005

    PubMed  CAS  Google Scholar 

  98. Carballo E, Lai WS, Blackshear PJ (2000) Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95:1891–1899

    PubMed  CAS  Google Scholar 

  99. Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19:4311–4323

    PubMed  CAS  Google Scholar 

  100. Tchen CR, Brook M, Saklatvala J, Clark AR (2004) The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. J Biol Chem 279:32393–32400

    PubMed  CAS  Google Scholar 

  101. Stoecklin G, Tenenbaum SA, Mayo T et al (2008) Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283:11689–11699

    PubMed  CAS  Google Scholar 

  102. Raghavan A, Robison RL, McNabb J, Miller CR, Williams DA, Bohjanen PR (2001) HuA and tristetraprolin are induced following T cell activation and display distinct but overlapping RNA binding specificities. J Biol Chem 276:47958–47965

    PubMed  CAS  Google Scholar 

  103. Fechir M, Linker K, Pautz A et al (2005) Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene. Mol Pharmacol 67:2148–2161

    PubMed  CAS  Google Scholar 

  104. Phillips K, Kedersha N, Shen L, Blackshear PJ, Anderson P (2004) Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor alpha, cyclooxygenase 2, and inflammatory arthritis. Proc Natl Acad Sci U S A 101:2011–2016

    PubMed  CAS  Google Scholar 

  105. Essafi-Benkhadir K, Onesto C, Stebe E, Moroni C, Pages G (2007) Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell 18:4648–4658

    PubMed  CAS  Google Scholar 

  106. Blackshear PJ, Lai WS, Kennington EA, et al (2003) Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrate. Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 278:19947–19955. Epub 2003 Mar 14

    Google Scholar 

  107. Brewer BY, Malicka J, Blackshear PJ, Wilson GM (2004) RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of Au-rich MRNA-destabilizing motifs. J Biol Chem 279:27870–27877

    PubMed  CAS  Google Scholar 

  108. Lai WS, Carrick DM, Blackshear PJ (2005) Influence of nonameric AU-rich tristetraprolin-binding sites on mRNA deadenylation and turnover. J Biol Chem 280:34365–34377

    PubMed  CAS  Google Scholar 

  109. Worthington MT, Pelo JW, Sachedina MA, Applegate JL, Arseneau KO, Pizarro TT (2002) RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J Biol Chem 277:48558–48564

    PubMed  CAS  Google Scholar 

  110. Lai WS, Kennington EA, Blackshear PJ (2002) Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 277:9606–9613

    PubMed  CAS  Google Scholar 

  111. Min H, Turck CW, Nikolic JM, Black DL (1997) A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev 11:1023–1036

    PubMed  CAS  Google Scholar 

  112. Hall MP, Huang S, Black DL (2004) Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell 15:774–786

    PubMed  CAS  Google Scholar 

  113. Briata P, Forcales SV, Ponassi M et al (2005) p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol Cell 20:891–903

    PubMed  CAS  Google Scholar 

  114. Gherzi R, Lee KY, Briata P et al (2004) A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 14:571–583

    PubMed  CAS  Google Scholar 

  115. Trabucchi M, Briata P, Garcia-Mayoral M et al (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459:1010–1014

    PubMed  CAS  Google Scholar 

  116. Winzen R, Thakur BK, Dittrich-Breiholz O et al (2007) Functional analysis of KSRP interaction with the AU-rich element of interleukin-8 and identification of inflammatory mRNA targets. Mol Cell Biol 27:8388–8400

    PubMed  CAS  Google Scholar 

  117. Garcia-Mayoral MF, Hollingworth D, Masino L et al (2007) The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mRNA degradation. Structure 15:485–498

    PubMed  CAS  Google Scholar 

  118. Nechama M, Peng Y, Bell O et al (2009) KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells. BMC Cell Biol 10:70

    PubMed  Google Scholar 

  119. Nechama M, Uchida T, Mor Yosef-Levi I, Silver J, Naveh-Many T (2009) The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism. J Clin Invest 119:3102–3114

    Google Scholar 

  120. Brewer G, An A (1991) + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol Cell Biol 11:2460–2466

    PubMed  CAS  Google Scholar 

  121. Wagner BJ, DeMaria CT, Sun Y, Wilson GM, Brewer G (1998) Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics 48:195–202

    PubMed  CAS  Google Scholar 

  122. DeMaria CT, Sun Y, Wagner BJ, Long L, Brewer GA (1997) Structural determination in AUF1 required for high affinity binding to A + U-rich elements. Nucleic Acids Symp Ser (36):12–14

    Google Scholar 

  123. Loflin P, Chen CY, Shyu AB (1999) Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Genes Dev 13:1884–1897

    PubMed  CAS  Google Scholar 

  124. Raineri I, Wegmueller D, Gross B, Certa U, Moroni C (2004) Roles of AUF1 isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA interference. Nucleic Acids Res 32:1279–1288

    PubMed  CAS  Google Scholar 

  125. Sarkar B, Xi Q, He C, Schneider RJ (2003) Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Mol Cell Biol 23:6685–6693

    PubMed  CAS  Google Scholar 

  126. Sarkar S, Sinsimer KS, Foster RL, Brewer G, Pestka S (2008) AUF1 isoform-specific regulation of anti-inflammatory IL10 expression in monocytes. J Interferon Cytokine Res 28:679–691

    PubMed  CAS  Google Scholar 

  127. Chen TM, Hsu CH, Tsai SJ, Sun HS (2010) AUF1 p42 isoform selectively controls both steady-state and PGE2-induced FGF9 mRNA decay. Nucleic Acids Res 38:8061–8071

    PubMed  CAS  Google Scholar 

  128. Ishimaru D, Zuraw L, Ramalingam S et al (2010) Mechanism of regulation of bcl-2 mRNA by nucleolin and A + U-rich element-binding factor 1 (AUF1). J Biol Chem 285:27182–27191

    PubMed  CAS  Google Scholar 

  129. Lu JY, Sadri N, Schneider RJ (2006) Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 20:3174–3184

    PubMed  CAS  Google Scholar 

  130. Xu N, Chen CY, Shyu AB (2001) Versatile role for hnRNP D isoforms in the differential regulation of cytoplasmic mRNA turnover. Mol Cell Biol 21:6960–6971

    PubMed  CAS  Google Scholar 

  131. Mazan-Mamczarz K, Kuwano Y, Zhan M et al (2009) Identification of a signature motif in target mRNAs of RNA-binding protein AUF1. Nucleic Acids Res 37:204–214

    PubMed  CAS  Google Scholar 

  132. Sarkar S, Han J, Sinsimer KS et al (2011) RNA-binding protein AUF1 regulates lipopolysaccharide-induced IL10 expression by activating IkappaB kinase complex in monocytes. Mol Cell Biol 31:602–615

    PubMed  CAS  Google Scholar 

  133. Lu JY, Bergman N, Sadri N, Schneider RJ (2006) Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA 12:883–893

    PubMed  CAS  Google Scholar 

  134. Sarkar B, Lu JY, Schneider RJ (2003) Nuclear import and export functions in the different isoforms of the AUF1/heterogeneous nuclear ribonucleoprotein protein family. J Biol Chem 278:20700–20707

    PubMed  CAS  Google Scholar 

  135. Laroia G, Schneider RJ (2002) Alternate exon insertion controls selective ubiquitination and degradation of different AUF1 protein isoforms. Nucleic Acids Res 30:3052–3058

    PubMed  CAS  Google Scholar 

  136. Brewer G, Saccani S, Sarkar S, Lewis A, Pestka S (2003) Increased interleukin-10 mRNA stability in melanoma cells is associated with decreased levels of A + U-rich element binding factor AUF1. J Interferon Cytokine Res 23:553–564

    PubMed  CAS  Google Scholar 

  137. Wilson GM, Lu J, Sutphen K et al (2003) Phosphorylation of p40AUF1 regulates binding to A + U-rich mRNA-destabilizing elements and protein-induced changes in ribonucleoprotein structure. J Biol Chem 278:33039–33048

    PubMed  CAS  Google Scholar 

  138. Wilson GM, Lu J, Sutphen K, Sun Y, Huynh Y, Brewer G (2003) Regulation of A + U-rich element-directed mRNA turnover involving reversible phosphorylation of AUF1. J Biol Chem 278:33029–33038

    PubMed  CAS  Google Scholar 

  139. Sinsimer KS, Gratacos FM, Knapinska AM et al (2008) Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Mol Cell Biol 28:5223–5237

    PubMed  CAS  Google Scholar 

  140. Knapinska AM, Gratacos FM, Krause CD et al (2011) Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol Cell Biol 31:1419–1431

    PubMed  CAS  Google Scholar 

  141. Brennan CM, Gallouzi IE, Steitz JA (2000) Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol 151:1–14

    PubMed  CAS  Google Scholar 

  142. Good PJ (1995) A conserved family of elav-like genes in vertebrates. Proc Natl Acad Sci U S A 92:4557–4561

    PubMed  CAS  Google Scholar 

  143. Ma WJ, Cheng S, Campbell C, Wright A, Furneaux H (1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem 271:8144–8151

    PubMed  CAS  Google Scholar 

  144. Szabo A, Dalmau J, Manley G et al (1991) HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67:325–333

    PubMed  CAS  Google Scholar 

  145. Abe R, Uyeno Y, Yamamoto K, Sakamoto H (1994) Tissue-specific expression of the gene encoding a mouse RNA binding protein homologous to human HuD antigen. DNA Res 1:175–180

    PubMed  CAS  Google Scholar 

  146. Sakai K, Gofuku M, Kitagawa Y et al (1994) A hippocampal protein associated with paraneoplastic neurologic syndrome and small cell lung carcinoma. Biochem Biophys Res Commun 199:1200–1208

    PubMed  CAS  Google Scholar 

  147. Okano HJ, Darnell RB (1997) A hierarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci 17:3024–3037

    PubMed  CAS  Google Scholar 

  148. Wakamatsu Y, Weston JA (1997) Sequential expression and role of Hu RNA-binding proteins during neurogenesis. Development 124:3449–3460

    PubMed  CAS  Google Scholar 

  149. Kasashima K, Terashima K, Yamamoto K, Sakashita E, Sakamoto H (1999) Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation. Genes Cells 4:667–683

    PubMed  CAS  Google Scholar 

  150. Antic D, Keene JD (1997) Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61:273–278

    PubMed  CAS  Google Scholar 

  151. King PH, Levine TD, Fremeau RT Jr, Keene JD (1994) Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3’ UTR of mRNA encoding the Id transcriptional repressor. J Neurosci 14:1943–1952

    PubMed  CAS  Google Scholar 

  152. Park S, Myszka DG, Yu M, Littler SJ, Laird-Offringa IA (2000) HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol 20:4765–4772

    PubMed  CAS  Google Scholar 

  153. Fialcowitz-White EJ, Brewer BY, Ballin JD, Willis CD, Toth EA, Wilson GM (2007) Specific protein domains mediate cooperative assembly of HuR oligomers on AU-rich mRNA-destabilizing sequences. J Biol Chem 282:20948–20959

    PubMed  CAS  Google Scholar 

  154. Fan XC, Myer VE, Steitz JA (1997) AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation. Genes Dev 11:2557–2568

    PubMed  CAS  Google Scholar 

  155. Myer VE, Fan XC, Steitz JA (1997) Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J 16:2130–2139

    PubMed  CAS  Google Scholar 

  156. Kim HS, Wilce MC, Yoga YM et al (2011) Different modes of interaction by TIAR and HuR with target RNA and DNA. Nucleic Acids Res 39:1117–1130

    PubMed  CAS  Google Scholar 

  157. el Akool S, Kleinert H, Hamada FM et al (2003) Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 23:4901–4916

    CAS  Google Scholar 

  158. Dean JL, Wait R, Mahtani KR, Sully G, Clark AR, Saklatvala J (2001) The 3’ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol 21:721–730

    PubMed  CAS  Google Scholar 

  159. van der Giessen K, Di-Marco S, Clair E, Gallouzi IE (2003) RNAi-mediated HuR depletion leads to the inhibition of muscle cell differentiation. J Biol Chem 278:47119–47128

    PubMed  Google Scholar 

  160. Sully G, Dean JL, Wait R et al (2004) Structural and functional dissection of a conserved destabilizing element of cyclo-oxygenase-2 mRNA: evidence against the involvement of AUF-1 [AU-rich element/poly(U)-binding/degradation factor-1], AUF-2, tristetraprolin, HuR (Hu antigen R) or FBP1 (far-upstream-sequence-element-binding protein 1). Biochem J 377:629–639

    PubMed  CAS  Google Scholar 

  161. Garcia-Dominguez DJ, Morello D, Cisneros E, Kontoyiannis DL, Frade JM (2011) Stabilization of Dll1 mRNA by Elavl1/HuR in neuroepithelial cells undergoing mitosis. Mol Biol Cell 22:1227–1239

    PubMed  CAS  Google Scholar 

  162. Ramgolam VS, DeGregorio SD, Rao GK et al (2010) T cell LFA-1 engagement induces HuR-dependent cytokine mRNA stabilization through a Vav-1, Rac1/2, p38MAPK and MKK3 signaling cascade. PLoS One 5:e14450

    PubMed  CAS  Google Scholar 

  163. Nowotarski SL, Shantz LM (2010) Cytoplasmic accumulation of the RNA-binding protein HuR stabilizes the ornithine decarboxylase transcript in a murine nonmelanoma skin cancer model. J Biol Chem 285:31885–31894

    PubMed  CAS  Google Scholar 

  164. Drury GL, Di Marco S, Dormoy-Raclet V, Desbarats J, Gallouzi IE (2010) FasL expression in activated T lymphocytes involves HuR-mediated stabilization. J Biol Chem 285:31130–31138

    PubMed  CAS  Google Scholar 

  165. Zhang X, Zou T, Rao JN et al (2009) Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines. Nucleic Acids Res 37:7623–7637

    PubMed  CAS  Google Scholar 

  166. Lafarga V, Cuadrado A, Lopez de Silanes I, Bengoechea R, Fernandez-Capetillo O, Nebreda AR (2009) p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol 29:4341–4351

    Google Scholar 

  167. Lopez de Silanes I, Gorospe M, Taniguchi H, et al (2009) The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA. Nucleic Acids Res 37:2658–2671

    Google Scholar 

  168. Kuwano Y, Kim HH, Abdelmohsen K et al (2008) MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 28:4562–4575

    PubMed  CAS  Google Scholar 

  169. Rzymski T, Paantjens A, Bod J, Harris AL (2008) Multiple pathways are involved in the anoxia response of SKIP3 including HuR-regulated RNA stability, NF-kappaB and ATF4. Oncogene 27:4532–4543

    PubMed  CAS  Google Scholar 

  170. Doller A, el Akool S, Huwiler A et al (2008) Posttranslational modification of the AU-rich element binding protein HuR by protein kinase Cdelta elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Mol Cell Biol 28:2608–2625

    PubMed  CAS  Google Scholar 

  171. Dormoy-Raclet V, Menard I, Clair E et al (2007) The RNA-binding protein HuR promotes cell migration and cell invasion by stabilizing the beta-actin mRNA in a U-rich-element-dependent manner. Mol Cell Biol 27:5365–5380

    PubMed  CAS  Google Scholar 

  172. Zou T, Mazan-Mamczarz K, Rao JN et al (2006) Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem 281:19387–19394

    PubMed  CAS  Google Scholar 

  173. Kim HH, Abdelmohsen K, Lal A et al (2008) Nuclear HuR accumulation through phosphorylation by Cdk1. Genes Dev 22:1804–1815

    PubMed  CAS  Google Scholar 

  174. Topisirovic I, Siddiqui N, Orolicki S et al (2009) Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. Mol Cell Biol 29:1152–1162

    PubMed  CAS  Google Scholar 

  175. Doller A, Pfeilschifter J, Eberhardt W (2008) Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal 20:2165–2173

    PubMed  CAS  Google Scholar 

  176. Kim HH, Abdelmohsen K, Gorospe M (2010) Regulation of HuR by DNA damage response kinases. J Nucleic Acids 25 july pii:981487

    Google Scholar 

  177. Fan XC, Steitz JA (1998) HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci U S A 95:15293–15298

    PubMed  CAS  Google Scholar 

  178. Guttinger S, Muhlhausser P, Koller-Eichhorn R, Brennecke J, Kutay U (2004) Transportin2 functions as importin and mediates nuclear import of HuR. Proc Natl Acad Sci U S A 101:2918–2923

    PubMed  Google Scholar 

  179. Rebane A, Aab A, Steitz JA (2004) Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA 10:590–599

    PubMed  CAS  Google Scholar 

  180. Gallouzi IE, Brennan CM, Steitz JA (2001) Protein ligands mediate the CRM1-dependent export of HuR in response to heat shock. RNA 7:1348–1361

    PubMed  CAS  Google Scholar 

  181. Gallouzi IE, Steitz JA (2001) Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 294:1895–1901

    PubMed  CAS  Google Scholar 

  182. Wang W, Fan J, Yang X et al (2002) AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 22:3425–3436

    PubMed  CAS  Google Scholar 

  183. Xu YZ, Di Marco S, Gallouzi I, Rola-Pleszczynski M, Radzioch D (2005) RNA-binding protein HuR is required for stabilization of SLC11A1 mRNA and SLC11A1 protein expression. Mol Cell Biol 25:8139–8149

    PubMed  CAS  Google Scholar 

  184. Yaman I, Fernandez J, Sarkar B et al (2002) Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J Biol Chem 277:41539–41546

    PubMed  CAS  Google Scholar 

  185. Atasoy U, Watson J, Patel D, Keene JD (1998) ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T cell activation. J Cell Sci 111(Pt 21):3145–3156

    PubMed  CAS  Google Scholar 

  186. Li H, Park S, Kilburn B et al (2002) Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J Biol Chem 277:44623–44630

    CAS  Google Scholar 

  187. Kawakami A, Tian Q, Duan X, Streuli M, Schlossman SF, Anderson P (1992) Identification and functional characterization of a TIA-1-related nucleolysin. Proc Natl Acad Sci U S A 89:8681–8685

    PubMed  CAS  Google Scholar 

  188. Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P (1991) A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 67:629–639

    PubMed  CAS  Google Scholar 

  189. Del Gatto-Konczak F, Bourgeois CF, Le Guiner C et al (2000) The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5’ splice site. Mol Cell Biol 20:6287–6299

    PubMed  Google Scholar 

  190. Forch P, Puig O, Kedersha N et al (2000) The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell 6:1089–1098

    PubMed  CAS  Google Scholar 

  191. Le Guiner C, Lejeune F, Galiana D et al (2001) TIA-1 and TIAR activate splicing of alternative exons with weak 5’ splice sites followed by a U-rich stretch on their own pre-mRNAs. J Biol Chem 276:40638–40646

    PubMed  Google Scholar 

  192. Gilks N, Kedersha N, Ayodele M et al (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15:5383–5398

    PubMed  CAS  Google Scholar 

  193. Dember LM, Kim ND, Liu KQ, Anderson P (1996) Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities. J Biol Chem 271:2783–2788

    PubMed  CAS  Google Scholar 

  194. Dixon DA, Balch GC, Kedersha N et al (2003) Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J Exp Med 198:475–481

    PubMed  CAS  Google Scholar 

  195. Gueydan C, Droogmans L, Chalon P, Huez G, Caput D, Kruys V (1999) Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. J Biol Chem 274:2322–2326

    PubMed  CAS  Google Scholar 

  196. Yamasaki S, Stoecklin G, Kedersha N, Simarro M, Anderson P (2007) T-cell intracellular antigen-1 (TIA-1)-induced translational silencing promotes the decay of selected mRNAs. J Biol Chem 282:30070–30077

    PubMed  CAS  Google Scholar 

  197. Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21:403–408

    PubMed  CAS  Google Scholar 

  198. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941

    PubMed  CAS  Google Scholar 

  199. Anderson P, Kedersha N (2009) Stress granules. Curr Biol 19:R397–R398

    PubMed  CAS  Google Scholar 

  200. Harding HP, Novoa I, Zhang Y et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    PubMed  CAS  Google Scholar 

  201. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    PubMed  CAS  Google Scholar 

  202. Jefferson LS, Kimball SR (2003) Amino acids as regulators of gene expression at the level of mRNA translation. J Nutr 133:2046S–2051S

    PubMed  CAS  Google Scholar 

  203. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    PubMed  CAS  Google Scholar 

  204. Kimball SR (2001) Regulation of translation initiation by amino acids in eukaryotic cells. Prog Mol Subcell Biol 26:155–184

    PubMed  CAS  Google Scholar 

  205. Srivastava SP, Kumar KU, Kaufman RJ (1998) Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem 273:2416–2423

    PubMed  CAS  Google Scholar 

  206. Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442

    PubMed  CAS  Google Scholar 

  207. Brill LM, Motamedchaboki K, Wu S, Wolf DA (2009) Comprehensive proteomic analysis of Schizosaccharomyces pombe by two-dimensional HPLC-tandem mass spectrometry. Methods 48:311–319

    PubMed  CAS  Google Scholar 

  208. Tao WA, Wollscheid B, O’Brien R et al (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods 2:591–598

    PubMed  CAS  Google Scholar 

  209. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150

    PubMed  CAS  Google Scholar 

  210. Tran H, Schilling M, Wirbelauer C, Hess D, Nagamine Y (2004) Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol Cell 13:101–111

    PubMed  CAS  Google Scholar 

  211. Chalupnikova K, Lattmann S, Selak N, Iwamoto F, Fujiki Y, Nagamine Y (2008) Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J Biol Chem 283:35186–35198

    PubMed  CAS  Google Scholar 

  212. Timchenko LT, Miller JW, Timchenko NA et al (1996) Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res 24:4407–4414

    PubMed  CAS  Google Scholar 

  213. Barreau C, Paillard L, Mereau A, Osborne HB (2006) Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions. Biochimie 88:515–525

    PubMed  CAS  Google Scholar 

  214. Charlet BN, Logan P, Singh G, Cooper TA (2002) Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol Cell 9:649–658

    Google Scholar 

  215. Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47

    PubMed  CAS  Google Scholar 

  216. Ho TH, Bundman D, Armstrong DL, Cooper TA (2005) Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet 14:1539–1547

    PubMed  CAS  Google Scholar 

  217. Ladd AN, Taffet G, Hartley C, Kearney DL, Cooper TA (2005) Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol Cell Biol 25:6267–6278

    PubMed  CAS  Google Scholar 

  218. Mukhopadhyay D, Houchen CW, Kennedy S, Dieckgraefe BK, Anant S (2003) Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol Cell 11:113–126

    PubMed  CAS  Google Scholar 

  219. Timchenko NA, Cai ZJ, Welm AL, Reddy S, Ashizawa T, Timchenko LT (2001) RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J Biol Chem 276:7820–7826

    PubMed  CAS  Google Scholar 

  220. Timchenko NA, Wang GL, Timchenko LT (2005) RNA CUG-binding protein 1 increases translation of 20-kDa isoform of CCAAT/enhancer-binding protein beta by interacting with the alpha and beta subunits of eukaryotic initiation translation factor 2. J Biol Chem 280:20549–20557

    PubMed  CAS  Google Scholar 

  221. Osborne HB, Gautier-Courteille C, Graindorge A et al (2005) Post-transcriptional regulation in Xenopus embryos: role and targets of EDEN-BP. Biochem Soc Trans 33:1541–1543

    PubMed  CAS  Google Scholar 

  222. Chen CY, Del Gatto-Konczak F, Wu Z, Karin M (1998) Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science 280:1945–1949

    PubMed  CAS  Google Scholar 

  223. Dean JL, Sully G, Clark AR, Saklatvala J (2004) The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 16:1113–1121

    PubMed  CAS  Google Scholar 

  224. Gherzi R, Trabucchi M, Ponassi M et al (2006) The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3 K-AKT signaling. PLoS Biol 5:e5

    PubMed  Google Scholar 

  225. Schmidlin M, Lu M, Leuenberger SA et al (2004) The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J 23:4760–4769

    PubMed  CAS  Google Scholar 

  226. Wang W, Yang X, Lopez de Silanes I, Carling D, Gorospe M (2003) Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem 278:27016–27023

    Google Scholar 

  227. Carpenter L, Cordery D, Biden TJ (2001) Protein kinase Cdelta activation by interleukin-1beta stabilizes inducible nitric-oxide synthase mRNA in pancreatic beta-cells. J Biol Chem 276:5368–5374

    PubMed  CAS  Google Scholar 

  228. Gringhuis SI, Garcia-Vallejo JJ, van Het Hof B, van Dijk W (2005) Convergent actions of I kappa B kinase beta and protein kinase C delta modulate mRNA stability through phosphorylation of 14–3-3 beta complexed with tristetraprolin. Mol Cell Biol 25:6454–6463

    PubMed  CAS  Google Scholar 

  229. Perrone-Bizzozero NI, Cansino VV, Kohn DT (1993) Posttranscriptional regulation of GAP-43 gene expression in PC12 cells through protein kinase C-dependent stabilization of the mRNA. J Cell Biol 120:1263–1270

    PubMed  CAS  Google Scholar 

  230. Briata P, Ilengo C, Corte G et al (2003) The Wnt/beta-catenin Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol Cell 12:1201–1211

    PubMed  CAS  Google Scholar 

  231. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112

    PubMed  CAS  Google Scholar 

  232. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    PubMed  CAS  Google Scholar 

  233. Brook M, Sully G, Clark AR, Saklatvala J (2000) Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett 483:57–61

    PubMed  CAS  Google Scholar 

  234. Clark AR, Dean JL, Saklatvala J (2003) Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett 546:37–44

    PubMed  CAS  Google Scholar 

  235. Dean JL, Brook M, Clark AR, Saklatvala J (1999) p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem 274:264–269

    PubMed  CAS  Google Scholar 

  236. Hitti E, Iakovleva T, Brook M et al (2006) Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 26:2399–2407

    PubMed  CAS  Google Scholar 

  237. Kotlyarov A, Neininger A, Schubert C et al (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1:94–97

    PubMed  CAS  Google Scholar 

  238. Miyazawa K, Mori A, Miyata H, Akahane M, Ajisawa Y, Okudaira H (1998) Regulation of interleukin-1beta-induced interleukin-6 gene expression in human fibroblast-like synoviocytes by p38 mitogen-activated protein kinase. J Biol Chem 273:24832–24838

    PubMed  CAS  Google Scholar 

  239. Ridley SH, Dean JL, Sarsfield SJ, Brook M, Clark AR, Saklatvala J (1998) A p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Lett 439:75–80

    PubMed  CAS  Google Scholar 

  240. Sirenko OI, Lofquist AK, DeMaria CT, Morris JS, Brewer G, Haskill JS (1997) Adhesion-dependent regulation of an A + U-rich element-binding activity associated with AUF1. Mol Cell Biol 17:3898–3906

    PubMed  CAS  Google Scholar 

  241. Winzen R, Gowrishankar G, Bollig F, Redich N, Resch K, Holtmann H (2004) Distinct domains of AU-rich elements exert different functions in mRNA destabilization and stabilization by p38 mitogen-activated protein kinase or HuR. Mol Cell Biol 24:4835–4847

    PubMed  CAS  Google Scholar 

  242. Frevel MA, Bakheet T, Silva AM, Hissong JG, Khabar KS, Williams BR (2003) p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol 23:425–436

    PubMed  CAS  Google Scholar 

  243. Neininger A, Kontoyiannis D, Kotlyarov A et al (2002) MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem 277:3065–3068

    PubMed  CAS  Google Scholar 

  244. Maitra S, Chou CF, Luber CA, Lee KY, Mann M, Chen CY (2008) The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. RNA 14:950–959

    PubMed  CAS  Google Scholar 

  245. Zhao W, Liu M, D’Silva NJ, Kirkwood KL (2011) Tristetraprolin Regulates Interleukin-6 Expression Through p38 MAPK-Dependent Affinity Changes with mRNA 3’ Untranslated Region. J Interferon Cytokine Res 31:629–637

    PubMed  CAS  Google Scholar 

  246. Otkjaer K, Holtmann H, Kragstrup TW et al (2010) The p38 MAPK regulates IL-24 expression by stabilization of the 3’ UTR of IL-24 mRNA. PLoS One 5:e8671

    PubMed  Google Scholar 

  247. Sandler H, Stoecklin G (2008) Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 36:491–496

    PubMed  CAS  Google Scholar 

  248. Dhanasekaran DN, Johnson GL (2007) MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 26:3097–3099

    PubMed  CAS  Google Scholar 

  249. Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR (2000) Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol 20:4265–4274

    PubMed  CAS  Google Scholar 

  250. Stoecklin G, Stubbs T, Kedersha N et al (2004) MK2-induced tristetraprolin:14–3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23:1313–1324

    PubMed  CAS  Google Scholar 

  251. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    PubMed  CAS  Google Scholar 

  252. Carballo E, Cao H, Lai WS, Kennington EA, Campbell D, Blackshear PJ (2001) Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway. J Biol Chem 276:42580–42587

    PubMed  CAS  Google Scholar 

  253. Chrestensen CA, Schroeder MJ, Shabanowitz J et al (2004) MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14–3-3 binding. J Biol Chem 279:10176–10184

    PubMed  CAS  Google Scholar 

  254. Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR (2001) Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21:6461–6469

    PubMed  CAS  Google Scholar 

  255. Cao H, Deterding LJ, Venable JD et al (2006) Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis. Biochem J 394:285–297

    PubMed  CAS  Google Scholar 

  256. Johnson BA, Stehn JR, Yaffe MB, Blackwell TK (2002) Cytoplasmic localization of tristetraprolin involves 14–3-3-dependent and -independent mechanisms. J Biol Chem 277:18029–18036

    PubMed  CAS  Google Scholar 

  257. Brook M, Tchen CR, Santalucia T et al (2006) Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol 26:2408–2418

    PubMed  CAS  Google Scholar 

  258. Ming XF, Kaiser M, Moroni C (1998) c-jun N-terminal kinase is involved in AUUUA-mediated interleukin-3 mRNA turnover in mast cells. EMBO J 17:6039–6048

    PubMed  CAS  Google Scholar 

  259. Chen CY, Gherzi R, Andersen JS et al (2000) Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 14:1236–1248

    PubMed  CAS  Google Scholar 

  260. Pages G, Berra E, Milanini J, Levy AP, Pouyssegur J (2000) Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem 275:26484–26491

    PubMed  CAS  Google Scholar 

  261. Lahti A, Jalonen U, Kankaanranta H, Moilanen E (2003) c-Jun NH2-terminal kinase inhibitor anthra(1,9-cd)pyrazol-6(2H)-one reduces inducible nitric-oxide synthase expression by destabilizing mRNA in activated macrophages. Mol Pharmacol 64:308–315

    PubMed  CAS  Google Scholar 

  262. Esnault S, Malter JS (2002) Extracellular signal-regulated kinase mediates granulocyte-macrophage colony-stimulating factor messenger RNA stabilization in tumor necrosis factor-alpha plus fibronectin-activated peripheral blood eosinophils. Blood 99:4048–4052

    PubMed  CAS  Google Scholar 

  263. Esnault S, Malter JS (2003) Hyaluronic acid or TNF-alpha plus fibronectin triggers granulocyte macrophage-colony-stimulating factor mRNA stabilization in eosinophils yet engages differential intracellular pathways and mRNA binding proteins. J Immunol 171:6780–6787

    PubMed  CAS  Google Scholar 

  264. Headley VV, Tanveer R, Greene SM, Zweifach A, Port JD (2004) Reciprocal regulation of beta-adrenergic receptor mRNA stability by mitogen activated protein kinase activation and inhibition. Mol Cell Biochem 258:109–119

    PubMed  CAS  Google Scholar 

  265. Shen ZJ, Esnault S, Malter JS (2005) The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat Immunol 6:1280–1287

    PubMed  CAS  Google Scholar 

  266. Zhai B, Yang H, Mancini A, He Q, Antoniou J, Di Battista JA (2010) Leukotriene B(4) BLT receptor signaling regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of Ras/Raf/ERK/p42 AUF1 pathway. J Biol Chem 285:23568–23580

    Google Scholar 

  267. Bermudez O, Jouandin P, Rottier J, Bourcier C, Pages G, Gimond C (2011) Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia. J Cell Physiol 226:276–284

    PubMed  CAS  Google Scholar 

  268. Taylor GA, Thompson MJ, Lai WS, Blackshear PJ (1995) Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J Biol Chem 270:13341–13347

    PubMed  CAS  Google Scholar 

  269. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24:7482–7492

    PubMed  CAS  Google Scholar 

  270. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98:10983–10985

    PubMed  CAS  Google Scholar 

  271. Fayard E, Tintignac LA, Baudry A, Hemmings BA (2005) Protein kinase B/Akt at a glance. J Cell Sci 118:5675–5678

    PubMed  CAS  Google Scholar 

  272. Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17:150–157

    PubMed  CAS  Google Scholar 

  273. Alessi DR, James SR, Downes CP et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269

    PubMed  CAS  Google Scholar 

  274. Gherzi R, Trabucchi M, Ponassi M et al (2006) The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biol 5:e5

    PubMed  Google Scholar 

  275. Ruggiero T, Trabucchi M, Ponassi M et al (2007) Identification of a set of KSRP target transcripts upregulated by PI3 K-AKT signaling. BMC Mol Biol 8:28

    PubMed  Google Scholar 

  276. Pei Y, Zhu P, Dang Y et al (2008) Nuclear export of NF90 to stabilize IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to CD28 costimulation. J Immunol 180:222–229

    PubMed  CAS  Google Scholar 

  277. Lopez de Silanes I, Lal A, Gorospe M (2005) HuR: post-transcriptional paths to malignancy. RNA Biol 2:11–13

    Google Scholar 

  278. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464

    PubMed  CAS  Google Scholar 

  279. Gouble A, Grazide S, Meggetto F, Mercier P, Delsol G, Morello D (2002) A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res 62:1489–1495

    PubMed  CAS  Google Scholar 

  280. Abdelmohsen K, Lal A, Kim HH, Gorospe M (2007) Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle 6:1288–1292

    PubMed  CAS  Google Scholar 

  281. Carrick DM, Blackshear PJ (2007) Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Arch Biochem Biophys 462:278–285

    PubMed  CAS  Google Scholar 

  282. Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM (2009) The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 69:5168–5176

    PubMed  CAS  Google Scholar 

  283. Sanduja S, Kaza V, Dixon DA (2009) The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging (Albany NY) 1:803–817

    CAS  Google Scholar 

  284. Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, Dixon DA (2009) The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 136:1669–1679

    PubMed  CAS  Google Scholar 

  285. Kanies CL, Smith JJ, Kis C et al (2008) Oncogenic Ras and transforming growth factor-beta synergistically regulate AU-rich element-containing mRNAs during epithelial to mesenchymal transition. Mol Cancer Res 6:1124–1136

    PubMed  CAS  Google Scholar 

  286. Planel S, Salomon A, Jalinot P, Feige JJ, Cherradi N (2010) A novel concept in antiangiogenic and antitumoral therapy: multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1. Oncogene 29:5989–6003

    PubMed  CAS  Google Scholar 

  287. Soussi T (2007) p53 alterations in human cancer: more questions than answers. Oncogene 26:2145–2156

    PubMed  CAS  Google Scholar 

  288. Vilborg A, Wilhelm MT, Wiman KG (2010) Regulation of tumor suppressor p53 at the RNA level. J Mol Med 88:645–652

    PubMed  CAS  Google Scholar 

  289. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Lykke-Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Damgaard, C.K., Lykke-Andersen, J. (2013). Regulation of ARE-mRNA Stability by Cellular Signaling: Implications for Human Cancer. In: Wu, J. (eds) RNA and Cancer. Cancer Treatment and Research, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31659-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31659-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31658-6

  • Online ISBN: 978-3-642-31659-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics