Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 175))

Abstract

It has generally been acknowledged that both proximity to the Pareto front and a certain diversity along the front should be targeted when using evolutionary algorithms to evolve solutions to multi-objective optimization problems. Although many evolutionary algorithms are equipped with mechanisms to achieve both targets, most give priority to proximity over diversity. This priority is embedded within the algorithms through the selection of solutions to the elite population based on the concept of dominance. Although the current study does not change this embedded preference, it does utilize an improved diversity preservation mechanism that is based on a recently introduced partitioning algorithm for function selection. It is shown that this partitioning allows for the selection of a well-diversified set out of an arbitrary given set. Further, when embedded into an evolutionary search, this procedure significantly enhances the exploitation of diversity. The procedure is demonstrated on commonly used test cases for up to five objectives. The potential for further improving evolutionary algorithms through the use of the partitioning algorithm is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, C.W., Ramakrishna, R.S.: A diversity preserving selection in multiobjective evolutionary algorithms. Applied Intelligence 32(3), 231–248 (2010), doi:10.1007/s10489-008-0140-0

    Article  Google Scholar 

  2. Avigad, G., Goldvard, A., Salomon, S.: Time-response-based evolutionary optimization. Tech. Rep. br352012, Ort Braude Academic College (2012), http://brd.braude.ac.il/gideon

  3. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 174–188 (2003)

    Article  Google Scholar 

  4. Coello Coello, C.A., van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer (2007)

    Google Scholar 

  5. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York (2001)

    MATH  Google Scholar 

  6. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimisation: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000), http://dl.acm.org/citation.cfm?id=645825.668937

    Chapter  Google Scholar 

  8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. Report 2 001 001, Kanpur Genetic Algorithms Lab (KanGAL), Indian Inst. Technol., Kanpur, India (2001)

    Google Scholar 

  9. Gerstl, K., Rudolph, G., Schütze, O., Trautmann, H.: Finding evenly spaced fronts for multiobjective control via averaging Hausdorff-measure. In: Int’l. Proc. Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2011), pp. 975–980 (2011)

    Google Scholar 

  10. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, pp. 82–87. IEEE Press (1994)

    Google Scholar 

  11. Laumanns, M., Očenášek, J.: Bayesian Optimization Algorithms for Multi-objective Optimization. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 298–307. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Li, M., Zheng, J., Xiao, G.: An efficient multi-objective evolutionary algorithm based on minimum spanning tree. In: Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 617–624 (2008), doi:10.1109/CEC.2008.4630860

    Google Scholar 

  13. Wineberg, M., Oppacher, F.: The Underlying Similarity of Diversity Measures Used in Evolutionary Computation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimization. IEEE Transactions on Evolutionary Computation 1 (to appear, 2012), doi:10.1109/TEVC.2011.2161872

    Google Scholar 

  15. Shen, X., Zhang, M., Li, T.: A multi-objective optimization evolutionary algorithm addressing diversity maintenance. In: International Joint Conference on Computational Sciences and Optimization, CSO 2009, vol. 1, pp. 524–527 (2009), doi:10.1109/CSO.2009.28

    Google Scholar 

  16. Sierra, M.R., Coello, C.A.C.: Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Solow, A., Polasky, S.: Measuring biological diversity. Environmental and Ecological Statistics 1, 95–103 (1994), http://dx.doi.org/10.1007/BF02426650 , doi:10.1007/BF02426650

    Article  Google Scholar 

  18. van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: Classifications, analyses and new innovations. Ph.D. thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA (1999)

    Google Scholar 

  19. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007), doi:10.1109/TEVC.2007.892759

    Article  Google Scholar 

  20. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. thesis, ETH, Zurich, Switzerland (1999)

    Google Scholar 

  21. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems. International Center for Numerical Methods in Engineering, Athens, Greece, pp. 95–100 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaul Salomon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salomon, S., Avigad, G., Goldvard, A., Schütze, O. (2013). PSA – A New Scalable Space Partition Based Selection Algorithm for MOEAs. In: Schütze, O., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. Advances in Intelligent Systems and Computing, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31519-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31519-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31518-3

  • Online ISBN: 978-3-642-31519-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics