Skip to main content

2 Molecular Approaches to Arbuscular Mycorrhiza Functioning

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

  • 2983 Accesses

Abstract

Arbuscular mycorrhizal (AM) fungi are very particular micro-organisms concerning their cytology, their genetics and their ecology. Being obligate biotrophs they are difficult objects for research. Modern molecular methods have, however, allowed elucidating the biology during their life cycle. This chapter first describes experimental systems and approaches from the first in vitro cultures up to recent laser dissection microscopy. The second part summarises how the application of these methodologies resulted in today’s knowledge about AM fungal functioning at four developmental stages: asymbiotic spore germination, presymbiotic hyphal branching, mutualistic exchange of nutrients with the plant and the adaptations of extraradical hyphae to their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    Article  PubMed  CAS  Google Scholar 

  • Aono T, Maldonado-Mendoza IE, Dewbre GR, Harrison MJ, Saito M (2004) Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytol 162:525–534

    Article  CAS  Google Scholar 

  • Avio L, Giovannetti M (1998) The protein pattern of spores of arbuscular mycorrhizal fungi – comparison of species, isolates and physiological stages. Mycol Res 102:985–990

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Douds DD, Brouillette J, Bécard G, Shachar-Hill Y (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–271

    Article  PubMed  CAS  Google Scholar 

  • Bago B, Pfeffer P, Shachar-Hill Y (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4–8

    Article  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  PubMed  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microb 55:2320–2322

    Google Scholar 

  • Bécard G, Doner LW, Rolin DB, Douds DD, Pfeffer PE (1991) Identification and quantification of trehalose in vesicular-arbuscular mycorrhizal fungi by in vivo 13C NMR and HPLC analyses. New Phytol 118:547–552

    Article  Google Scholar 

  • Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonius – changes in neutral and polar lipids. J Lip Res 21:739–750

    CAS  Google Scholar 

  • Benabdellah K, Merlos MA, Azcon-Aguilar C, Ferrol N (2009a) GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol 46:94–103

    Article  PubMed  CAS  Google Scholar 

  • Benabdellah K, Azcon-Aguilar C, Valderas A, Speziga D, Fitzpatrick TB, Ferrol N (2009b) GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 184:682–693

    Article  PubMed  CAS  Google Scholar 

  • Benedetto A, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627

    Article  PubMed  CAS  Google Scholar 

  • Besserer A, Bécard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microb 66:4503–4509

    Article  CAS  Google Scholar 

  • Boddington CL, Dodd JC (1998) A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8:149–157

    Article  CAS  Google Scholar 

  • Brechenmacher L, Weidmann S, Van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatulaGlomus mosseae interactions. Mycorrhiza 14:253–262

    Article  PubMed  CAS  Google Scholar 

  • Breuninger M, Requena N (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fung Genet Biol 41:794–804

    Article  CAS  Google Scholar 

  • Breuninger M, Trujillo CG, Serrano E, Fischer R, Requena N (2004) Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fung Genet Biol 41:542–552

    Article  CAS  Google Scholar 

  • Bücking H, Abubaker J, Govindarajulu M, Tala M, Pfeffer PE, Nagahashi G, Lammers P, Shachar-Hill Y (2008) Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of Glomus intraradices. New Phytol 180:684–695

    Article  PubMed  CAS  Google Scholar 

  • Bütehorn B, Gianinazzi-Pearson V, Franken P (1999) Quantification of beta-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus Glomus mosseae. Mycol Res 103:360–364

    Article  Google Scholar 

  • Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437

    Article  PubMed  CAS  Google Scholar 

  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189:347–355

    Article  PubMed  CAS  Google Scholar 

  • Cox G, Tinker PB (1976) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. New Phytol 7:371–378

    Article  Google Scholar 

  • Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytol 84:649–659

    Article  CAS  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  PubMed  CAS  Google Scholar 

  • Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loucao MA, Jakobsen I (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol 144:782–792

    Article  PubMed  CAS  Google Scholar 

  • Dickson S, Smith SE (2001) Cross walls in arbuscular trunk hyphae form after loss of metabolic activity. New Phytol 151:735–742

    Article  Google Scholar 

  • Dumas-Gaudot E, Valot B, Bestel-Corre G, Recorbet G, St-Arnaud M, Fontaine B, Dieu M, Raes M, Saravanan RS, Gianinazzi S (2004) Proteomics as a way to identify extra-radicular fungal proteins from Glomus intraradices – RiT-DNA carrot root mycorrhizas. FEMS Microbiol Ecol 48:401–411

    Article  PubMed  CAS  Google Scholar 

  • Ferrol N, Barea JM, Azcon-Aguilar C (2000) The plasma membrane H+-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37:112–118

    Article  PubMed  CAS  Google Scholar 

  • Forbes PJ, Millam S, Hooker JE, Harrier LA (1998) Transformation of the arbuscular mycorrhizal fungus Gigaspora rosea by particle bombardment. Mycol Res 102:497–501

    Article  Google Scholar 

  • Franken P, Gianinazzi-Pearson V (1996) Phage cloning of ribosomal RNA genes from the arbuscular mycorrhizal fungi Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe and Scutellospora castanea Walker. Mycorrhiza 6:167–173

    Article  CAS  Google Scholar 

  • Franken P, Lapopin L, Meyer-Gauen G, Gianinazzi-Pearson V (1997) RNA accumulation and genes expressed in spores of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycologia 89:295–299

    Article  Google Scholar 

  • Franken P, Requena N, Bütehorn B, Krajinski F, Kuhn G, Lapopin L, Mann P, Rhody D, Stommel M (2000) Molecular analysis of the arbuscular mycorrhiza symbiosis. Arch Agron Soil Sci 45:271–286

    Article  CAS  Google Scholar 

  • Frey B, Vilarino A, Schuepp H, Arines J (1994) Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 26:711–717

    Article  CAS  Google Scholar 

  • Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, Jin HR, Nagahashi G, Lammers PJ, Shachar-Hill Y, Bucking H (2009) Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol 184:399–411

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Bonfante P (2007) Check-in procedures for plant cell entry by biotrophic microbes. Mol Plant Microbe Interact 20:1023–1030

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1976) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. Physiologie Végétale 14:833–841

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-symbiotic phase. New Phytol 125:587–594

    Article  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microb 65:5571–5575

    CAS  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang YH, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez MDA, Ortega-Larrocea MD, Carrillo-Gonzalez R, Lopez-Meyer M, Xoconostle-Cazares B, Gomez SK, Harrison MJ, Figueroa-Lopez AM, Maldonado-Mendoza IE (2011) Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza. Fungal Biol 115:1197–1209

    Article  CAS  Google Scholar 

  • González-Guerero M, Benabdellah K, Valderas A, Azcon-Aguilar C, Ferrol N (2010) GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146

    Article  CAS  Google Scholar 

  • González-Guerrero M, Azccón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fung Genet Biol 42:130–140

    Article  CAS  Google Scholar 

  • González-Guerrero M, Cano C, Azcon-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Oger E, Benabdellah K, Azcon-Aguilar C, Lanfranco L, Ferrol N (2010) Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Curr Genet 56:265–274

    Article  PubMed  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  PubMed  CAS  Google Scholar 

  • Güther M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  Google Scholar 

  • Harrier LA, Paterson LJ (2002) Inducibility studies with the arbuscular mycorrhizal fungus Glomus mosseae 3-phosphoglycerate kinase (PGK) gene promoter. Curr Genet 42:169–178

    Article  PubMed  CAS  Google Scholar 

  • Harrier LA, Sawczak J (2000) Detection of the 3-phosphoglycerate kinase protein of Glomus mosseae. Mycorrhiza 10:81–86

    Article  CAS  Google Scholar 

  • Harrier LA, Wright F, Hooker JE (1998) Isolation of the 3-phosphoglycerate kinase gene of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe. Curr Genet 34:386–392

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  PubMed  CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Helber N, Requena N (2008) Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 177:537–548

    PubMed  CAS  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  PubMed  CAS  Google Scholar 

  • Heupel S, Roser B, Kuhn H, Lebrun MH, Villalba F, Requena N (2010) Erl1, a novel Era-like GTPase from Magnaporthe oryzae, is required for full root virulence and is conserved in the mutualistic symbiont Glomus intraradices. Mol Plant Microbe Interact 23:67–81

    Article  PubMed  CAS  Google Scholar 

  • Hijri M, Sanders IR (2004) The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes. Fung Genet Biol 41:253–261

    Article  CAS  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Let 254:258–267

    Article  CAS  Google Scholar 

  • Hooker JE, Piatti P, Cheshire MV, Watson CA (2007) Polysaccharides and monosaccharides in the hyphosphere of the arbuscular mycorrhizal fungi Glomus E3 and Glomus tenue. Soil Biol Biochem 39:680–683

    Article  CAS  Google Scholar 

  • Hosny M, Van Tuinen D, Jacquin F, Füller P, Zhao B, Gianinazzi-Pearson V, Franken P (1999) Arbuscular mycorrhizal fungi and bacteria: how to construct prokaryotic DNA-free genomic libraries from the Glomales. FEMS Microbiol Lett 170:425–430

    Article  CAS  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  PubMed  CAS  Google Scholar 

  • Jun J, Abubaker J, Rehrer C, Pfeffer PE, Shachar-Hill Y, Lammers PJ (2002) Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cytoskeleton and the cell cycle. Plant Soil 244:141–148

    Article  CAS  Google Scholar 

  • Kaldorf M, Zimmer W, Bothe H (1994) Genetic evidence for the occurence of assimilatory nitrate reductase in arbuscular mycorrhizal and other fungi. Mycorrhiza 5:23–28

    Article  CAS  Google Scholar 

  • Kaldorf M, Schmelzer E, Bothe H (1998) Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. Mol Plant Microbe Interact 11:439–448

    Article  PubMed  CAS  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  PubMed  CAS  Google Scholar 

  • Kojima T, Saito M (2004) Possible involvement of hyphal phosphatase in phosphate efflux from intraradical hyphae isolated from mycorrhizal roots colonized by Gigaspora margarita. Mycol Res 108:610–615

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova E, Seddas-Dozolme PMA, Arnould C, Tollot M, Van Tuinen D, Borisov A, Gianinazzi S, Gianinazzi-Pearson V (2010) Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices. Mycorrhiza 20:427–443

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco L, Vallino M, Bonfante P (1999) Expression of chitin synthase genes in the arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol 142:347–354

    Article  CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Cesale RE, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbucular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Lapopin L, Gianinazzi-Pearson V, Franken P (1999) Comparative differential display analysis of arbuscular mycorrhiza in Pisum sativum and a mutant defective in late stage development. Plant Mol Biol 41:669–677

    Article  PubMed  CAS  Google Scholar 

  • Lei J, Bécard G, Catford JG, Piché Y (1991) Root factor stimulate 32P uptake and plasmalemma ATPase activity in the vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 118:289–294

    Article  CAS  Google Scholar 

  • Lopez-Pedrosa A, González-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fung Genet Biol 43:102–110

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, van Buuren ML, Versaw WK, Harrison MJ (2002) Methods to estimate the proportion of plant and fungal RNA in an arbuscular mycorrhiza. Mycorrhiza 12:67–74

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Shachar-Hill Y, Shapiro H, Tuskan GA, Young JPW (2008) The long hard road to a completed Glomus intraradices genome. New Phytol 180:747–750

    Article  PubMed  CAS  Google Scholar 

  • Mosse B (1959) The regulated germination of resting spores and some observations on growth requirement of Endogones sp. causing VAM. Trans Br Mycol Soc 42:273–286

    Article  Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular-arbuscular mycorrhizal infections in root organ-cultures. Physiol Plant Pathol 5:215–223

    Article  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathol 77:1045–1050

    Article  Google Scholar 

  • Nagy S, Nordby HE, Nemec S (1980) Composition of lipids in roots of 6 citrus cultivars infected with the vesicular-arbuscular mycorrhizal fungus, Glomus mosseae. New Phytol 85:377–384

    Article  CAS  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, George E (2005) Extraction of extraradical arbuscular mycorrhizal mycelium from compartments filled with soil and glass beads. Mycorrhiza 15:533–537

    Article  PubMed  Google Scholar 

  • Ocon A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879–891

    Article  PubMed  CAS  Google Scholar 

  • Peretto R, Bettini V, Favaron F, Alghisi P, Bonfante P (1995) Polygalacturonase activity and location in arbuscular mycorrhiza root of Allium porrum L. Mycorrhiza 5:157–163

    Article  CAS  Google Scholar 

  • Perez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcon-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer PE, Douds DD, Bécard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    Article  PubMed  CAS  Google Scholar 

  • Ramos AC, Facanha AR, Feijo JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188

    Article  PubMed  CAS  Google Scholar 

  • Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E (2010) Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet Biol 47:608–618

    Article  PubMed  CAS  Google Scholar 

  • Redecker D, Thierfelder H, Werner D (1995) A new cultivation system for arbuscular mycorrhizal fungi on glass beads. Angew Bot 69:189–191

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    PubMed  CAS  Google Scholar 

  • Requena N, Füller P, Franken P (1999) Molecular characterisation of GmFOX2, an evolutionary highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during interaction with rhizobacteria. Mol Plant Microbe Interact 12:934–942

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Mann P, Hampp R, Franken P (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: Identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139

    Article  CAS  Google Scholar 

  • Requena N, Breuninger M, Franken P, Ocon A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549

    Article  PubMed  CAS  Google Scholar 

  • Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. New Phytol 129:425–431

    Article  CAS  Google Scholar 

  • Samra A, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (1996) Soluble proteins and polypeptides profiles of spores of arbuscular mycorrhizal fungi. Interspecific variability and effects of host (myc+) and non-host (myc-) Pisum sativum root exudates. Agronomie 16:709–719

    Article  Google Scholar 

  • Sanders IR, Ravolanirina F, Gianinazzi-Pearson V, Gianinazzi S, Lemoine MC (1992) Detection of specific antigens in the vesicular-arbuscular mycorrhizal fungi Gigaspora margarita and Acaulospora laevis using polyclonal antibodies to soluble spore fractions. Mycol Res 96:477–480

    Article  Google Scholar 

  • Sawaki H, Saito M (2001) Expressed genes in the extraradical hyphae of an arbuscular mycorrhizal fungus, Glomus intraradices, in the symbiotic phase. FEMS Microbiol Lett 195:109–113

    Article  PubMed  CAS  Google Scholar 

  • Schmitz O, Danneberg G, Hundeshagen B, Klingner A, Bothe H (1991) Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J Plant Physiol 139:106–114

    Article  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Seddas PMA, Arnould C, Tollot M, Arias CM, Gianinazzi-Pearson V (2008) Spatial monitoring of gene activity in extraradical and intraradical developmental stages of arbuscular mycorrhizal fungi by direct fluorescent in situ RT-PCR. Fung Genet Biol 45:1155–1165

    Article  CAS  Google Scholar 

  • Seddas PMA, Arias CM, Arnould C, Van Tuinen D, Godfroy O, Benhassou HA, Gouzy J, Morandi D, Dessaint F, Gianinazzi-Pearson V (2009) Symbiosis-related plant renes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. Mol Plant Microbe Interact 22:341–351

    Article  PubMed  CAS  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15

    PubMed  CAS  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18 S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microb 58:291–295

    CAS  Google Scholar 

  • Siqueira JO, Hubbell DH, Schenck NC (1982) Spore germination and germ tube growth of a vesicular-arbuscular mycorrhizal fungus in vitro. Mycologia 74:952–959

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Solaiman MdZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538

    Article  CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Stewart LI, Jabaji-Hare S, Driscoll BT (2006) Effects of external phosphate concentration on glucose-6-phosphate dehydrogenase gene expression in the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 52:823–830

    Article  PubMed  CAS  Google Scholar 

  • Stommel M, Mann P, Franken P (2001) Construction and analysis of an EST library using RNA from activated spores of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285

    Article  CAS  Google Scholar 

  • Tamasloukht M, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factor induce mitochondrial-related-gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  PubMed  CAS  Google Scholar 

  • Tamasloukht M, Waschke A, Franken P (2007) Root exudate-stimulated RNA accumulation in the arbuscular mycorrhizal fungus Gigaspora rosea. Soil Biol Biochem 39:1824–1827

    Article  CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher-plants by Agrobacterium rhizogenes – sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  PubMed  CAS  Google Scholar 

  • Thomson BD, Clarkson DT, Brain P (1990) Kinetics of phosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 116:647–653

    Article  CAS  Google Scholar 

  • Tian CJ, Kasiborski B, Koul R, Lammers PJ, Bucking H, Shachar-Hill Y (2010) Nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activities for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JPW, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769

    Article  PubMed  CAS  Google Scholar 

  • Tollot M, Hoi JWS, Van Tuinen D, Arnould C, Chatagnier O, Dumas B, Gianinazzi-Pearson V, Seddas PMA (2009) An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen. New Phytol 181:693–707

    Article  PubMed  CAS  Google Scholar 

  • Tommerup IC (1983) Spore dormancy in vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 81:37–45

    Article  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagne S, Avis TJ, Rioux JA (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microb 71:5341–5347

    Article  CAS  Google Scholar 

  • Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi: effects of selected Streptomyces species. Phytopathol 81:754–759

    Article  Google Scholar 

  • Ubalijoro E, Hamel C, McClung CR, Smith DL (2001) Detection of chitin synthase class I and II type sequences in six different arbuscular mycorrhizal fungi and gene expression in Glomus intraradices. Mycol Res 105:470–476

    Article  CAS  Google Scholar 

  • Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P (2006) Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 17:1–10

    Article  PubMed  CAS  Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. Cattel, Lancaster

    Book  Google Scholar 

  • Zézé A, Dulieu H, Gianinazzi-Pearson V (1994) DNA cloning and screening of a partial genomic library from an arbuscular mycorrhizal fungus, Scutellospora castanea. Mycorrhiza 4:251–254

    Article  Google Scholar 

  • Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve tube exudates. In: Zimmermann MH, Milburn JA (eds) Transport in plants 1: phloem transport. Springer, Berlin, pp 480–503

    Google Scholar 

Download references

Acknowledgements

Astrid Waschke was supported by the DFG (German Research Foundation: SFB 395) and by the Ministries of Food, Agriculture, and Consumer Protection of the Federal Republic of Germany and of the states Brandenburg and Thüringen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Franken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franken, P., Waschke, A., Requena, N. (2012). 2 Molecular Approaches to Arbuscular Mycorrhiza Functioning. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30826-0_2

Download citation

Publish with us

Policies and ethics