Skip to main content
Log in

Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The arbuscular mycorrhiza association results from a successful interaction between genomes of the plant and fungal symbiotic partners. In this study, we analyzed the effect of inactivation of late-stage symbiosis-related pea genes on symbiosis-associated fungal and plant molecular responses in order to gain insight into their role in the functional mycorrhizal association. The expression of a subset of ten fungal and eight plant genes, previously reported to be activated during mycorrhiza development, was compared in Glomus intraradices-inoculated wild-type and isogenic genotypes of pea mutated for the PsSym36, PsSym33, and PsSym40 genes where arbuscule formation is inhibited or fungal turnover modulated, respectively. Microdissection was used to corroborate arbuscule-related fungal gene expression. Molecular responses varied between pea genotypes and with fungal development. Most of the fungal genes were downregulated when arbuscule formation was defective, and several were upregulated with more rapid fungal development. Some of the plant genes were also affected by inactivation of the PsSym36, PsSym33, and PsSym40 loci, but in a more time-dependent way during root colonization by G. intraradices. Results indicate a role of the late-stage symbiosis-related pea genes not only in mycorrhiza development but also in the symbiotic functioning of arbuscule-containing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aono T, Maldonado-Mendoza IE, Dewbre GR, Harrison MJ, Saito M (2004) Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytol 162:525–534

    Article  CAS  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509–524

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Berta G, Bonfante P (1992) The plant nucleus in mycorrhizal roots: positional and structural modifications. Biol Cell 75:235–243

    Article  Google Scholar 

  • Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant–Microbe Interact 20:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Bonfante-Fasolo P, Scannerini S (1992) The cellular basis of plant–fungus interchanges in mycorrhizal associations. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant–fungal process. Chapman and Hall, New York, pp 65–101

    Google Scholar 

  • Borisov AY, Voroshilova VA, Zhukov VA, Zhernakov AI, Danilova TN, Shtark OY, Naumkina TS, Tsyganov VE, Madsen LH, Sanjuan J, Olivares J, Priefer UB, Ellis N, Stougaard J, Tikhonovich IA (2004) Pea (Pisum sativum) regulatory genes controlling development of nitrogen-fixing nodules and arbuscular mycorrhiza. In: Tikhonovich I, Lugtenberg B, Provorov N (eds) Biology of plant–microbe interactions, vol 4. IS-MPMI, St. Paul, pp 502–505

    Google Scholar 

  • Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula–Glomus mosseae interactions. Mycorrhiza 14:253–262

    Article  CAS  PubMed  Google Scholar 

  • Breuninger M, Requena N (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Gen Biol 41:794–804

    Article  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200

    Article  Google Scholar 

  • Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M, Boller T, Felix G, Amrhein N, Bucher M (2007) Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318:265–268

    Article  CAS  PubMed  Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (Myc−) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci 60:215–222

    Article  Google Scholar 

  • Engvild KC (1987) Nodulation and nitrogen fixation mutants of pea, Pisum sativum. Theor Appl Genet 74:711–713

    Article  Google Scholar 

  • Franken P, Gnädinger F (1994) Analysis of parsley arbuscular endomycorrhiza: infection development and mRNA level of defense-related genes. Mol Plant–Microbe Interact 7:612–620

    CAS  Google Scholar 

  • Frenzel A, Manthey K, Perlick AM, Meyer F, Pülher A, Krajinski F, Küster H (2005) Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant–Microbe Interact 18:771–782

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Bonfante P (2002) Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycorrhizal fungus. Protoplasma 219:43–50

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S, Guillemin JP, Trouvelot A, Duc G (1991) Genetic and cellular analysis of resistance to vesicular arbuscular (VA) mycorrhizal fungi in pea mutants. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant–microbe interactions. Kluwer, The Netherlands, pp 336–342

    Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Lherminier J, Tisserant B, Franken P, Dumas-Gaudot E, Lemoine M-C, van Tuinen D, Gianinazzi S (1995) Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations. Can J Bot 73:S526–S532

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Armould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Séjalon-Delmas N, Genre A, Jeandroz S, Bonfante P (2007) Plants and arbuscular mycorrhizal fungi: cues and communication in the early steps of symbiotic interactions. Adv Bot Res 46:181–219

    Article  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  PubMed  Google Scholar 

  • Groysman M, Hornstein I, Alcover A, Katzav S (2002) Vav1 and Ly-GDI, two regulators of Rho GTPases, function cooperatively as signal transducers in T cell antigen receptor-induced pathways. J Biol Chem 277:50121–55013

    Article  CAS  PubMed  Google Scholar 

  • Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Microbiol 55:553–566

    CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communication no. 22 (revised 2nd edition) of the Commonwealth Bureau of Horticulture and Plantation Crops, East Malling, Maidstone. Kent. Commonwealth Agricultural Bureaux, Farnham Royal, p 547

    Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  CAS  PubMed  Google Scholar 

  • Jacobi LM, Petrova OS, Tsyganov VE, Borisov AY, Tikhonovich IA (2003a) Effect of mutations in the pea genes Sym33 and Sym40. I. Arbuscular mycorrhiza formation and function. Mycorrhiza 13:3–7

    CAS  PubMed  Google Scholar 

  • Jacobi LM, Zubkova LA, Barmicheva EM, Tsyganov VE, Borisov AY et al (2003b) Effects of mutations in the pea genes Sym33 and Sym40. II. Dynamics of arbuscule development and turnover. Mycorrhiza 13:9–16

    CAS  PubMed  Google Scholar 

  • Janoušková M, Seddas P, Mrnka L, van Tuinen D, Dvořáčková A, Gianinazzi-Pearson V, Vosátka M, Gollotte A (2009) Development and activity of Glomus intraradices as affected by coexistence with Glomus claroideum in one root system. Mycorrhiza 19:393–402

    Article  PubMed  Google Scholar 

  • Javot H, Penmetsa V, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Ligterink W, Hirt H (1999) MAP kinases in plant signal transduction. Cell Mol Life Sci 55:204–213

    Article  CAS  PubMed  Google Scholar 

  • Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucl Acids Res 30:5579–5592

    Article  PubMed  Google Scholar 

  • Kojima T, Hayatsu M, Saito M (2001) Electrophoretic detection and partial purification of the phosphatase specific for arbuscular mycorrhizal symbiosis. Bull Nat Grassland Res Inst 60:9–11

    CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  PubMed  Google Scholar 

  • Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biol 4:754–761

    Article  CAS  Google Scholar 

  • Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108:95–113

    Article  PubMed  Google Scholar 

  • Lanfranco L, Novero M, Bonfante B (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase which is up-regulated during the symbiosis with legume hosts. Plant Physiol 137:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Lapopin L, Gianinazzi-Pearson V, Franken P (1999) Comparative differential display analysis of arbuscular mycorrhiza in Pisum sativum and a mutant defective in late stage development. Plant Mol Biol 41:669–677

    Article  CAS  PubMed  Google Scholar 

  • Lemoine MC, Gollotte A, Gianinazzi-Pearson V (1995) Localization of beta (1–3) glucan in walls of the endomycorrhizal fungi Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe and Acaulospora laevis Gerd. & Trappe during colonization of host roots. New Phytol 129:97–105

    Article  CAS  Google Scholar 

  • Lim CH, Ozkanca R, Flint KP (1996) The effects of osmotic stress on survival and alkaline phosphatase activity of Aeromonas hydrophila. FEMS Microbiol Lett 137:19–24

    Article  CAS  Google Scholar 

  • Liu J, Blaylock L, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  CAS  PubMed  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant–Microbe Interact 17:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Shachar-Hill Y, Shapiro H, Tuskan GA, Young JPW (2008) The long hard road to a completed Glomus intraradices genome. New Phytol 180:747–750

    Article  CAS  PubMed  Google Scholar 

  • Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez L, Selim S, Gianinazzi S, Gianinazzi-Pearson V (2007) Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota. Mycorrhiza 17:223–234

    Article  CAS  PubMed  Google Scholar 

  • Miele R, Borro M, Mangoni ML, Simmaco M, Barra D (2003) A peptidylprolyl cis/trans isomerase from Xenopus laevis skin: cloning, biochemical characterization and putative role in the secretion. Peptides 24:1713–1721

    Article  CAS  PubMed  Google Scholar 

  • Murray A (1995) Cyclin ubiquitination: the destructive end of mitosis. Cell 81:149–152

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Becceril F, Calantzis C, Turnau K, Caussanel J-P, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Google Scholar 

  • Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, Gianinazzi-Pearson V (2005) Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol 139:1065–1077

    Article  CAS  PubMed  Google Scholar 

  • Schnabel E, Journet EP, Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase the regulates nodule number and root length. Plant Mol Biol 58:809–822

    Article  PubMed  Google Scholar 

  • Seddas PMA, Arnould C, Tollot M, Arias CM, Gianinazzi-Pearson V (2008) Spatial monitoring of gene activity in extraradical and intraradical developmental stages of arbuscular mycorrhizal fungi by direct fluorescent in situ RT-PCR. Fungal Gen Biol 45:1155–1165

    Article  CAS  Google Scholar 

  • Seddas PMA, Arias CM, Arnould C, van Tuinen D, Godfroy O, Benhassou HA, Gouzy J, Morandi M, Dessaint F, Gianinazzi-Pearson V (2009) Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. Mol Plant–Microbe Interact 22:341–351

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter G, Gheysen G, Gianinazzi-Pearson V, Hahn K, Niebel A, Rohde W, Tacke E (1996) Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene. Mol Plant–Microbe Interact 9:68–73

    CAS  PubMed  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Mycorrhizae: physiology and genetics. INRA, Paris, pp 217–221

    Google Scholar 

  • Vieheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular–mycorrhizal fungi. App Environ Microbiol 64:5004–5007

    Google Scholar 

  • Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant–Microbe Interact 17:1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse HW (1975) Membrane structure and transport problems considered in relation to phosphorus and carbohydrate movements and the regulation of endotrophic associations. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 209–239

    Google Scholar 

  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant–Microbe Interact 16:306–314

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Choi H-Y, Cook DR, Shoemaker RC (2005) Bridging model and crop legume crops through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Foreign Affairs Ministry (doctoral grant to E. Kuznetsova), the Regional Council of Burgundy (Project no. 07 9201 AAO40 S3623), RFBR (10-04-01026, 10-04-01146), and the Russian Ministry of Science and Education (02.512.11.2254). Authors thank G. Duc for seeds of P. sativum cv. Finale and Pssym36 pea genotypes, C. Desmetz and Z. Hao for assistance respectively in RNA control and statistical analyses, and A. Colombet and V. Monfort for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivienne Gianinazzi-Pearson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, E., Seddas-Dozolme, P.M.A., Arnould, C. et al. Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices . Mycorrhiza 20, 427–443 (2010). https://doi.org/10.1007/s00572-009-0292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0292-8

Keywords

Navigation