Next Generation Flexible and Cognitive Heterogeneous Optical Networks

Supporting the Evolution to the Future Internet
  • Ioannis Tomkos
  • Marianna Angelou
  • Ramón J. Durán Barroso
  • Ignacio de Miguel
  • Rubén M. Lorenzo Toledo
  • Domenico Siracusa
  • Elio Salvadori
  • Andrzej Tymecki
  • Yabin Ye
  • Idelfonso Tafur Monroy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7281)


Optical networking is the cornerstone of the Future Internet as it provides the physical infrastructure of the core backbone networks. Recent developments have enabled much better quality of service/experience for the end users, enabled through the much higher capacities that can be supported. Furthermore, optical networking developments facilitate the reduction of complexity of operations at the IP layer and therefore reduce the latency of the connections and the expenditures to deploy and operate the networks. New research directions in optical networking promise to further advance the capabilities of the Future Internet. In this book chapter, we highlight the latest activities of the optical networking community and in particular what has been the focus of EU funded research. The concepts of flexible and cognitive optical networks are introduced and their key expected benefits are highlighted. The overall framework envisioned for the future cognitive flexible optical networks are introduced and recent developments are presented.


Optical Networks Optical Transport Cognitive Networks Flexible Optical Networks 


  1. 1.
    Saleh, A.A.M.: Transparent optical networking in backbone networks. In: Optical Fiber Communication Conference, OSA Technical Digest Series Optical Society of America (2000); paper ThD7Google Scholar
  2. 2.
    Gunkel, M., et al.: A Cost Model for the WDM Layer. In: Photonics in Switching Conference PS (2006)Google Scholar
  3. 3.
    Liu, X., Chandrasekhar, S.: High Spectral-Efficiency Mixed 10G/40G/100G Transmission. In: Proc. AOE 2008, OSA Technical Digest (CD) (Optical Society of America) (2008); paper SuA2Google Scholar
  4. 4.
    Klekamp, A., et al.: Transmission Reach of Optical-OFDM Superchannels with 10-600 Gb/s for Transparent Bit-Rate Adaptive Networks. In: Proceedings of ECOC (2011); paper Tu.3.K.2Google Scholar
  5. 5.
    Chandrasekhar, S., et al.: Transmission of a 1.2-Tb/s 24-Carrier No-Guard-Interval Coherent OFDM Superchannel over 7200-km of Ultra-Large-Area Fiber. In: Proceedings of ECOC (2009); paper PD2.6Google Scholar
  6. 6.
    Gavioli, G., et al.: Investigation of the Impact of Ultra-Narrow Carrier Spacing on the Transmission of a 10-Carrier 1Tb/s Superchannel. In: Proceedings of OFC (2010); paper OThD3Google Scholar
  7. 7.
    Borkowski, R., et al.: Experimental Demonstration of Mixed Formats and Bit Rates Signal Allocation for Spectrum-flexible Optical Networking. In: Proc. Optical Fibre Communications Conference, Los Angeles CA, USA (March 2012); paper OW3A.7Google Scholar
  8. 8.
    Jinno, M., et al.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Communications Magazine 47, 66–73 (2009)CrossRefGoogle Scholar
  9. 9.
    Agraz, F., et al.: Experimental Demonstration of Centralized and Distributed Impairment-Aware Control Plane Schemes for Dynamic Transparent Optical Networks. In: OFC/NFOEC (2010); paper PDPD5Google Scholar
  10. 10.
    Nag, A., Tornatore, M., Mukherjee, B.: Optical Network Design With Mixed Line Rates and Multiple Modulation Formats. IEEE/OSA Journal of Lightwave Technology (JLT) 28, 466 (2010)CrossRefGoogle Scholar
  11. 11.
    Salvadori, E., et al.: Handling Transmission Impairments in WDM Optical Networks by Using Distributed Optical Control Plane Architectures. IEEE/OSA Journal of Lightwave Technology (JLT) 27(13) (July 2009)Google Scholar
  12. 12.
    Zhang, F., et al.: Requirements for GMPLS Control of Flexible Grids. IETF Internet Draft. draft-zhang-ccamp-flexible-grid-requirements-01.txt (October 2011)Google Scholar
  13. 13.
    King, D., et al.: Generalized Labels for the Flexi-Grid in Lambda-Switch-Capable (LSC) Label Switching Routers. IETF Internet Draft, draft-farrkingel-ccamp-flexigrid-lambda-label-01.txt (October 2011)Google Scholar
  14. 14.
    Cugini, F., et al.: Demonstration of Flexible Optical Network based on Path Computation Element. IEEE/OSA Journal of Lightwave Technology (JLT) 30(5) (December 2011)Google Scholar
  15. 15.
    Thomas, R.W., Friend, D.H., DaSilva, L.A., MacKenzie, A.B.: Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine 44, 51–57 (2006)CrossRefGoogle Scholar
  16. 16.
    Future Internet Public-Private Partnership Programme (FI-PPP),
  17. 17.
    Gerstel, O.: Realistic Approaches to Scaling the IP Network using Optics. In: Proceedings of OFC (2011); paper OWP1Google Scholar
  18. 18.
    CHRON project,
  19. 19.
    Mahmoud, Q.H. (ed.): Cognitive Networks: Towards Self-Aware Networks. John Wiley & Sons, Ltd. (2007)Google Scholar
  20. 20.
    Jiménez, T., et al.: A Cognitive System for Fast Quality of Transmission Estimation in Core Optical Network. In: Proc. OFC/NFOEC (2012); paper OW3A.5Google Scholar
  21. 21.
    Fernández, N., et al.: Cognition to Design Energetically Efficient and Impairment Aware Virtual Topologies for Optical Networks. In: 16th International Conference on Optical Networking Design and Modeling, ONDM 2012. University of Essex, Colchester (in press, 2012)Google Scholar
  22. 22.
    Christodoulopoulos, K., et al.: Elastic Bandwidth Allocation in Flexible OFDM-based Optical Networks. J. Lightwave Technol. 29, 1354–1366 (2011)CrossRefGoogle Scholar
  23. 23.
    Bocoi, M., et al.: Cost Comparison of Networks Using Traditional 10&40 Gb/s Transponders versus OFDM Transponders. In: Proceedings of OFC (2008); OThB4Google Scholar
  24. 24.
    Poole, S., et al.: Bandwidth-flexible ROADMs as Network Elements. In: Proceedings of OFC (2011); paper OTuE1Google Scholar
  25. 25.
    Christodoulopoulos, K., et al.: Value analysis methodology for flexible optical networks. In: ECOC 2011 (2011); paper We.10.P1.89Google Scholar
  26. 26.
    Christodoulopoulos, K., Manousakis, K., Varvarigos, E.: Reach Adapting Algorithms for Mixed Line Rate WDM Transport Networks. J. Lightwave Technol. 29, 3350–3363 (2011)CrossRefGoogle Scholar
  27. 27.
    Patel, A.N., Ji, P., Jue, J.P., Wang, T.: First Shared Path Protection Scheme for Generalized Network Connectivity in Gridless Optical WDM Networks. In: Proceedings of ACP 2010, PD6, 1-2 (December 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ioannis Tomkos
    • 1
  • Marianna Angelou
    • 1
  • Ramón J. Durán Barroso
    • 2
  • Ignacio de Miguel
    • 2
  • Rubén M. Lorenzo Toledo
    • 2
  • Domenico Siracusa
    • 3
  • Elio Salvadori
    • 3
  • Andrzej Tymecki
    • 4
  • Yabin Ye
    • 5
  • Idelfonso Tafur Monroy
    • 6
  1. 1.Athens Information Technology (AIT)Greece
  2. 2.University of ValladolidSpain
  3. 3.CREATE-NETItaly
  4. 4.Telekomunikacja PolskaPoland
  5. 5.HuaweiGermany
  6. 6.Fotonik DepartmentDTUDenmark

Personalised recommendations