Advertisement

Policy-Enhanced Private Set Intersection: Sharing Information While Enforcing Privacy Policies

  • Emil Stefanov
  • Elaine Shi
  • Dawn Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7293)

Abstract

Companies, organizations, and individuals often wish to share information to realize valuable social and economic goals. Unfortunately, privacy concerns often stand in the way of such information sharing and exchange.

This paper proposes a novel cryptographic paradigm called Policy-Enhanced Private Set Intersection (PPSI ), allowing two parties to share information while enforcing the desired privacy policies. Our constructions require minimal additional overhead over traditional Private Set Intersection (PSI) protocols, and yet we can handle rich policy semantics previously not possible with traditional PSI and Authorized Private Set Intersection (APSI) protocols. Our scheme involves running a standard PSI protocol over carefully crafted encodings of elements formed as part of a challenge-response mechanism. The structure of these encodings resemble techniques used for aggregating BLS signatures in bilinear groups. We prove that our scheme is secure in the malicious model, under the CBDH assumption, the random oracle model, and the assumption that the underlying PSI protocol is secure against malicious adversaries.

Keywords

Hash Function Privacy Policy Random Oracle Random Oracle Model Hybrid Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Policy-enhanced private set intersection: Sharing information while enforcing privacy policies. Techinical Report (2012), http://eprint.iacr.org/2011/509.pdf
  2. 2.
    Anton, A.I., Eart, J.B., Vail, M.W., Jain, N., Gheen, C.M., Frink, J.M.: HIPAA’s effect on web site privacy policies. IEEE Security and Privacy 5 (January 2007)Google Scholar
  3. 3.
    Ateniese, G., Cristofaro, E.D., Tsudik, G.: Size-hiding private set intersection. Cryptology ePrint Archive, Report 2010/220 (2010), http://eprint.iacr.org/
  4. 4.
    Bertino, E., Ooi, B.C., Yang, Y., Deng, R.H.: Privacy and ownership preserving of outsourced medical data. In: ICDE (2005)Google Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Zaverucha, G.M.: Private Intersection of Certified Sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Canetti, R.: Security and composition of multi-party cryptographic protocols. Journal of Cryptology (1998)Google Scholar
  8. 8.
    De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-Preserving Policy-Based Information Transfer. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 164–184. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Lynn, B.: Pairing-based cryptography library, http://crypto.stanford.edu/pbc/

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Emil Stefanov
    • 1
  • Elaine Shi
    • 1
  • Dawn Song
    • 1
  1. 1.UC BerkeleyUSA

Personalised recommendations