Advertisement

Abstract

Mixed choice is a widely-used primitive in process calculi. It is interesting, as it allows to break symmetries in distributed process networks. We present an encoding of mixed choice in the context of the π-calculus and investigate to what extent it can be considered “good”. As a crucial novelty, we introduce a suitable criterion to measure whether the degree of distribution in process networks is preserved.

Keywords

Source Term Parallel Operator Target Language Expressive Power Source Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Bou92]
    Boudol, G.: Asynchrony and the π-calculus (note). Note, INRIA (May 1992)Google Scholar
  2. [CM03]
    Carbone, M., Maffeis, S.: On the Expressive Power of Polyadic Synchronisation in π-Calculus. Nordic Journal of Computing 10, 1–29 (2003)MathSciNetGoogle Scholar
  3. [Gor08]
    Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for Process Calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 492–507. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. [Gor10]
    Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for Process Calculi. Information and Computation 208(9), 1031–1053 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [HT91]
    Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. [Lan07]
    Lanese, I.: Concurrent and Located Synchronizations in π-Calculus. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 388–399. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. [Nes00]
    Nestmann, U.: What is a ”Good” Encoding of Guarded Choice? Information and Computation 156(1-2), 287–319 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [Pal03]
    Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous π-calculi. Mathematical Structures in Computer Science 13(5), 685–719 (2003)MathSciNetCrossRefGoogle Scholar
  9. [PN10]
    Peters, K., Nestmann, U.: Breaking Symmetries. In: Fröschle, S.B., Valencia, F.D. (eds.) EXPRESS. EPTCS, vol. 41, pp. 136–150 (2010)Google Scholar
  10. [PN12]
    Peters, K., Nestmann, U.: Is it a ”Good” Encoding of Mixed Choice? (Technical Report). Technical Report, TU Berlin, Germany (January 2012), http://arxiv.org/corr/home
  11. [PSN11]
    Peters, K., Schicke-Uffmann, J.-W., Nestmann, U.: Synchrony vs Causality in the Asynchronous Pi-Calculus. In: Luttik, B., Valencia, F.D. (eds.) EXPRESS. EPTCS, vol. 64, pp. 89–103 (2011)Google Scholar
  12. [SW01]
    Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge University Press, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kirstin Peters
    • 1
  • Uwe Nestmann
    • 1
  1. 1.Technische Universität BerlinGermany

Personalised recommendations