Is It a “Good” Encoding of Mixed Choice?*

Kirstin Peters and Uwe Nestmann

Technische Universitdt Berlin, Germany

Abstract. Mixed choice is a widely-used primitive in process calculi.
It is interesting, as it allows to break symmetries in distributed process
networks. We present an encoding of mixed choice in the context of the
m-calculus and investigate to what extent it can be considered “good”.
As a crucial novelty, we introduce a suitable criterion to measure whether
the degree of distribution in process networks is preserved.

1 Introduction

It is well-known [Pal03] [Gor10, [PN10] that there is no good encoding from the full
m-calculus—the synchronous w-calculus including mixed choice—into its
asynchronous variant if the encoding translates the parallel operator rigidly (a
criterion included in uniformity in [Pal03]). Palamidessi was the first to point out
that mixed choice strictly raises the absolute expressive power of the synchronous
m-calculus compared to its asynchronous variant. Analysing this result [PN10], we
observed that it boils down to the fact that the full m-calculus can break merely
syntactic symmetries, where its asynchronous variant can not. However, the con-
dition of rigid translation of the parallel operator is rather strict. Therefore, Gorla
proposed the weaker criterion of compositional translation of the source language
operators (see DefinitionHdlat page[2I4]). We show that this weakening of the struc-
tural condition on the encoding of the parallel operator turns the separation result
into an encodability result, by presenting a good encoding of mixed choicdl. So,
merely considering the (abstract) behaviour of terms, the full w-calculus and its
asynchronous variant have the same expressive power.

The situation changes again if we additionally take into account the degree
of distribution. In the area of distributed communicating systems it is natural
to consider distributed algorithms, that perform at least some of their tasks
concurrently. Thus, an answer to the question whether an encoding preserves
the degree of distribution of the original algorithm, becomes important. In order
to measure the preservation of the degree of distribution we introduce a novel
but intuitive (semantic) criterion, which is strictly weaker than the (syntactic)
requirement of rigid translation of the parallel operator. Using this criterion in
addition to the criteria presented in [Gorl0], we again obtain, as expected, a
separation result by showing that there is no good encoding of mixed choice
that preserves the degree of distribution of source terms.

* Supported by the DFG (German Research Foundation), grant NE-1505/2-1.
! Note that this encoding is neither prompt nor is the assumed equivalence < strict, so
the similar separation results of [Gor08] and [Gor10] do not apply here.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 210-E24, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Is It a “Good” Encoding of Mixed Choice? 211

Overview of the Paper. In Section[2] we introduce the considered variants of the
m-calculus, some abbreviations to simplify the presentation of encodings, and
the criteria of [Gorl0] to measure the correctness of encodings. In Section [we
revisit the encoding given in [Nes00]; based on it, we present a novel encoding,
denoted by [-].", of mixed choice. Section € discusses in how far an encoding

a’?

like [-] can preserve the degree of distribution. We conclude in Section

2 Technical Preliminaries

2.1 The w-Calculus

Our source language is the monadic w-calculus as described for instance in
[SWOI]. As already demonstrated in [Pal03] the most interesting operator for
a comparison of the expressive power between the full w-calculus and its asyn-
chronous variant is mixed choice, i.e., choice between input and output capabil-
ities. Thus we denote the full w-calculus also by 7. Let N denote a countably
infinite set of names with 7 ¢ A and N\ the set of co-names, i.e., N ={n | n € N'}.
We use lower case letters a,a’,a1,...,2,y,... to range over names.

Definition 1 (my). The set of process terms of the synchronous m-calculus
(with mixed choice), denoted by Pr,, is given by

Pu=(@wn)P | PP, | [a=b]P | y*(2).P | > m.P
i€l
ma=y(x) [ylz) [7

where n,a,b,x,y, 2 € N range over names and I ranges over finite index sets.

The interpretation of process terms is as usual. We consider two subcalculi of
Tm. The process terms Py of mg —the w-calculus with separate choice—are ob-
tained by restricting the choice primitive such that in each choice either no input
guarded or no output guarded alternatives appear. The process terms P, of the
asynchronous m-calculus 7, [Bou92, [HTI1] are obtained by limiting each sum to
at most one branch and requiring that outputs can only guard the empty sum.

Note that we augment all three variants of the w-Calculus with matching,
because we need it at least in m, to encode mixed choice. Of course, the pres-
ence of match influences the expressive power of 7,. However, we do not know,
whether the use of match in the encoding of mixed choice can be circumvented,
although there are reasons indicating that this is indeed not possible. We leave
the consideration of this problem to further research.

We use capital letters P, P, P,...,Q,R,... to range over processes. Let
fn(P), bn(P), and n(P) denotes the sets of free names, bound names and all
names occurring in P, respectively. Their definitions are completely standard.
Given an input prefix y (z) or an output prefix y (x) we call y the subject and x

212 K. Peters and U. Nestmann

TAU,m ...4+7.P+...— P

CoMm (.4 y@).P+..)](..+y(z.Q+..)0— {*L}tP|Q

PAR P+— P RES P+ P’
P|Q— P |Q (va)P+— (va) P’
P=P P+—Q Q=Q

ConaG PO

Fig. 1. Reduction Semantics of 7,

the object of the action. We denote the subject of an action also as link or channel
name, while we denote the object as value or parameter. Note that in case the
object does not matter we omit it, i.e., we abbreviate an input guarded term
y (x).P or an output guarded term y (x).P such that = & fn(P) by y.P or y.P,
respectively. We denote the empty sum with 0 and often omit it in continuations.
As usual, we sometimes write a sum Zie{il,,,,,in} . Py asmy Py, +...+m, . Pi,.

We use o,0’,01,... to range over substitutions. A substitution is a mapping
{**yss " Jy, } from names to names. The application of a substitution on
a term {*'/y,,..., " /y, } (P) is defined as the result of simultaneously replac-
ing all free occurrences of y; by x; for i € {1,...,n}, possibly applying alpha-
conversion to avoid capture or name clashes. For all names in N\ {y1,...,¥yn},
the substitution behaves as the identity mapping. Let id denote identity, i.e. id
is the empty substitution. We naturally extend substitutions to co-names, i.e.
VYn € N'.o(n) = o (n) for all substitutions o.

The reduction semantics of my, is given by the transition rules in Figure [I]
where structural congruence, denoted by =, is defined as usuald. The reduction
semantics of 7y is the same, and it is even simpler for 7, because of the restrictions
on its syntax. As usual, we use =, if we refer to alpha-conversion only.

Let P — (P +/—) denote existence (non-existence) of a step from P, i.e.
there is (no) P’ € P such that P — P’. Moreover, let = be the reflexive and
transitive closure of — and let ——° define an infinite sequence of steps.

In Section B3] we present several criteria to measure the quality of an en-
coding. The first of these criteria relies on the notion of a context. A context
C([]1y---,[]n) is a m-term, i.e., a my-term in case of Definition] with n so-called
holes. Plugging the m,-terms Py, ..., P, into the respective holes [-]1,...,[], of
the context, yields a term denoted C (Py, ..., P,). A context C ([‘]1,...,[]n) can
be seen as a function of type P, X ... x P, — P, of arity n, applicable to param-
eters Py, ..., P,. Note that a context may bind some free names of P,..., P,.

2 Note that, since we do not use “!” but replicated input, the common rule !P = P ||P

becomes y* (z) .P =y (z).P |y (z).P.

Is It a “Good” Encoding of Mixed Choice? 213

2.2 Abbreviations

To shorten the presentation and ease the readability of the rather lengthy en-
coding function in Section [, we use some abbreviations on m,-terms. First note
that we defined only monadic versions of the calculi my,, 75, and 7,, where ac-
cross any link exactly one value is transmitted. However, within the presented
encoding function in Section[3] we treat the target language 7, as if it allows for
polyadic communication. More precisely, we allow asynchronous links to carry
any number of values from zero to five, of course under the requirement that
within each m,-term no link name is used twice with different multiplicities. Let
Z denote a sequence of names. Note that these polyadic actions can be sim-
ply translated into monadic actions by a standard encoding as given in [SWOI].
Thus, we silently use the polyadic version of 7, in the following. Second, as
already done in [Nes00], we use the following abbreviations to define boolean
values and a conditional construct.

Definition 2 (Tests on Booleans). Let B £ {T, L} be the set of boolean
values, where T denotes true and 1 denotes false.

Let I,t,f € N and P,Q € P,. Then a boolean instantiation of I, i.e., the
allocation of a boolean wvalue to a link I, and a test-statement on a boolean
instantiation are defined by

[I>

{T) It f).t
(L) £ 1t f).f
test [then P else () (vt, f) (l {t, f)|t.P| fQ)

>

for some t, f ¢ fn(P) Ufn(Q).

Finally, we define forwarders, i.e., a simple process to forward each received
message along some specified set of links.

Definition 3 (Forwarder). Let I be a finite index set and for all i € I lety
and y; be channel names with multiplicity n € N, then a forwarder is given by:

y>{yiliel} = y*(x17~-~7$n)~<H9i<x17-~-7l’n>>

el

In case of a singleton set we omit the brackets, i.e., y —y' = y— {y'}.

2.3 Quality Criteria for Encodings

Within this paper we consider two encodings, (1) an encoding from 75 into
ma presented in [Nes00], denoted by [-], and (2) a new encoding from 7y,
into m,, denoted by [-]];n To measure the quality of such an encoding, Gorla
[Gor10] suggested five criteria well suited for language comparison. Accordingly,
we consider an encoding to be “good”, if it satisfies Gorla’s five criteria.

214 K. Peters and U. Nestmann

As in [Gorl()], an encoding is a mapping from a source into a target language;
in our case, T, and 7y are source languages and 7, is the target language. To
distinguish terms on these languages or definitions for the respective encodings,
we use m, s, and a as super- and subscripts. Thereby, the superscript usually
refers to the source and the subscript to the target language. Moreover, we use
S,8’,51,... to range over terms of the source languages and T,T",T},... to
range over terms of the target language.

The five conditions are divided into two structural and three semantic criteria.
The structural criteria include (1) name invariance and (2) compositionality. The
semantic criteria include (3) operational correspondence, (4) divergence reflection
and (5) success sensitiveness. We do not repeat them formally, here, except for
compositionality. Note that for name invariance and operational correspondence
a behavioural equivalence < on the target language is assumed. Its purpose is to
describe the “abstract” behaviour of a target process, where abstract basically
means “with respect to the behaviour of the source term”.

(1) The first structural criterion name invariance states that the encoding
should not depend on specific names used in the source term. This is important,
as sometimes it is necessary to translate a source term name into a sequence of
names or reserve some names for the encoding function. To ensure that there
are no conflicts between these reserved names and the source term names, the
encoding is equipped with a remaming policy, more precisely, a substitution ¢
from names into sequences of names. Note that in the case of [-]’ and [-]}’
the renaming policies are injective substitutions from names into single names.
Based on such a renaming policy, an encoding is independent of specific names
if it preserves all substitutions ¢ on source terms by a substitution o’ on target
terms such that ¢’ respects the changes made by the renaming policy.

(2) The second structural criterion compositionality aims at relaxing rigidity.
We call the translation of a operator op rigid, if [op] is mapped onto op?, i.e.,
essentially the same operator, but possibly adapted to comply with the renaming
policy ¢. For example, [(vx) P] = (v ¢(x)) [P] translates the restriction on a
single name into the restriction on the sequence of associated names. Now, we
call the translation of an operator op “merely” compositional if [op | is defined
quite more liberally as a context Cgp (of the same arity as op) that mediates
between the translations of op’s parameters, while those parameters are still
translated independently of op. In order to realize this mediation, the context
Cop must at least be allowed to know some of the parameters’ free names.

Definition 4 (Compositionality). The encoding [- | is compositional if, for
every k-ary operator op of the source language and for every subset of names N,
there exists a k-ary context Cé\; (I)1s- -5 [Jk) such that, for all Si,...,Sy with
fn(S1)U...Ufn(Sk) = N, it holds that

[[Op(sla”'ask)]]:Cc])\;_)([[sl]]w'-a[[sk]])'

Note that Gorla requires the parallel composition operator “|” to be binary
and unique in both the source and the target language. Thus, compositionality
prevents us from introducing a global coordinator or to use global knowledge, i.e.,

Is It a “Good” Encoding of Mixed Choice? 215

>

5]

iel

(i) <l (M) [T TP]]Z)

iel

>

[7.P]5 £ testithen (I(L)[[P]) elsel(L)
[9(2).PI 2 (vs) (y(s,2) | . [PL)
ly@).PI 2 wr)(r|ry (', s).
test | then test I’ then [(L) | I/(L)|s|[P]]
else [{(T)y |V (L)y|r
else [(L) [y (l',s,z))
[y"(@).P] £ y"(l,s,x) test [then [(L) | s| [P]; else I (L)

>

>

>

Fig. 2. Encode 75 into 7. [Nes00]

knowledge about surrounding source terms or the structure of the parameters.
We discuss this point in Section [l

(3) The first semantic criterion and usually the most elaborate one to prove
is operational correspondence, which consists of a soundness and a completeness
condition. Completeness requires that every computation of a source term can be
emulated by its translation, i.e., the translation does not shrink the set of compu-
tations of the source term. Note that encodings often translate single source term
steps into sequences of target term steps. We call such sequences emulations of
the corresponding source term step. Soundness requires that every computation
of a target term corresponds to some computation of the corresponding source
term, i.e., the translation does not introduce new computations.

(4) With divergence reflection we require, that any infinite execution of a
target term corresponds to an infinite execution of the respective source.

(5) The last criterion success sensitiveness links the behaviour of source terms
to the behaviour of their encodings. With Gorla [Gorl(], we assume a success
operator v' as part of the syntax of both the source and the target language, i.e.,
of mp,, ms, and 7,. Since v’ can not be further reduced, the operational semantics is
left unchanged in all three cases. Moreover, note that n(v) = fn(v') = bn(v)) = 0,
so also interplay of v' with the rules of structural congruence is smooth and does
not require explicit treatment. The test for reachability of success is standard.
Finally, an encoding preserves the abstract behaviour of the source term if it
and its encoding answer the tests for success in exactly the same way.

For a more exhaustive and formal description we refer to [Gorl0)].

3 Encoding Mixed Choice

Nestmann [Nes00] presents an encoding from 74 into 7,, in the following denoted
by [-]5, that encodes the parallel operator rigidly: [P | QS = [P |[Q.
In the following, for simplicity, we omit the indication of the renaming policy.

216 K. Peters and U. Nestmann

The full details are given in [PN12]. The encodings of sum, guarded terms, and
replicated input are given in Figure 2] where, in the last four clauses, we assume
that the name [that is used on the right-hand sides is an implicit parameter
of the encoding function, as supplied in the first of the above clauses. The re-
maining operators are translated rigidly (compare to their translationsin [-]").
The main idea of this encoding is to introduce a so-called sum lock [carrying a
boolean value for each sum. In order to emulate a step on a source term summand
the respective sum lock is checked. In case its boolean value is T the respective
source term step is emulated, else the emulation is aborted and the terms cor-
responding to this emulation attempt remain as junk (compare to [Nes00] for a
more detailed discussion of this encoding). [Nes00] argues for the correctness of
this encoding by proving its deadlock- and divergence-freedom; he also discussed
the possibilities to state full abstraction results. In [PN12], we present a proof
of its correctness with respect to the criteria presented in Section [2.3]

As already proved in [Pal03] and later on rephrased in [Gorl0, [PN10], it
is not possible to encode 7, into m,, while translating the parallel operator
rigidly. However, by weakening this requirement, the separation result no longer
holds—instead, an encodability result is possible. To prove this, we give an en-
coding from 7y, into m,, denoted as [-], that is correct with respect to the
criteria established by [Gor08| [Gor10)].

As stated in [Nes00], the encoding presented above introduces deadlock when
applied in the case of mixed choice, due to the nested test-statements in the
encoding of an input-guarded source term. However, [Nes00] also states that all
potential deadlocks can be avoided by using a total ordering on the sum locks.
Of course, compositionality forbids to simply augment the encoding with an
arbitrary previously created ordering, because this would require some form of
global knowledge on the source terms. So, the main idea behind the design of
[-]2 is to augment [-]} with an algorithm to dynamically compute an order
on the sum locks—at runtime. Unfortunately, this algorithm fairly blows up the
translation of the parallel operator and replicated input.

For sums, the translation via [- [follows exactly the scheme of [- .

m
ﬂzmﬂ ﬂ 5 () (z ()1 T L me-P. u?)
i€l a i€l

This translation splits up the encoded summands in parallel and introduces the
sum locks, which are initialised by T. To order these sum locks, we first have
to transport them to a surrounding parallel operator encoding: for example, in
P | @, with P and @ being sequential processes, the sums occurring in either P
or @ will have their locks ordered by means of the translation [P | @].". There-
fore, in the translation, we let input- and output-guarded source terms not com-
municate directly, but instead require that they first register their send/receive
abilities to a surrounding parallel operator encoding, by sending an output re-
quest p, (y, 1, s, z) or an input request p; (y, [, r). A request carries all necessary
information to resolve a nested test-statement, i.e., the translated link name,
the corresponding sum lock, a sender lock or a receiver lock, and, in case of

Is It a “Good” Encoding of Mixed Choice? 217

an output request, the translation of the transmitted value. Note that a sender
lock, i.e., the s in [-]2, is used to guard the encoded continuation of the sender,
while over the receiver lock, i.e., the 7 in [-]I, the ordered sum locks are trans-
mitted back to the receiver. For convenience, the mapping [[]];n is implicitly
parametrised by the names p, and p;; in the clause for parallel composition,
some of their occurrences will be bound, while others will be free.

[I>

[7.P]) = testithen [(L)|[P elsel(L)
[502) PI™ 2 (v5) (po by 5,2} | 5. PT7)
ly(z).P]) (wr)(pi (y, Ly | ™ (b, by —, 5, 2)
test /; thentest i then iy (L) | L (L) |s|[PV
else iy (T) | k(L)

else Iy (L))

(1>

[I>

Apart from requests, the encoding of guarded terms is very similar to [-]]Z The
requests push the task of finding matching source term communication partners
to the surrounding parallel operator encodings. There, a strict policy controls
the redirection of requests. First, it restricts the request channels p, and p; for
both of its parameters to be able to distinguish requests from the left from those
from the right side.

H P | Q]]:1 £ (V Mo, My Po,ups Pi,ups Coy Ciy Mo up, mi,up) (

(v po, pi) ([P]. | procLeftOutReq | procLeftInReq)
| (v po, pi) ([Q1) | procRightOutReq | procRightInReq)
| pushReq)

Note that, since is binary, a source term is structured as a binary tree—its
parallel structure—with a sum or a replicated input in its leafs and a parallel
operator in each remaining node. At each such node, a matching pair of commu-
nication partners can meet. More precisely, for every pair of matching communi-
cation partners, there is exactly one node such that one partner is at its left and
the other at its right side. Therefore, each parallel operator encoding pushes all
received (left or right) requests further upwards to a surrounding parallel opera-
tor encoding by means of the forwarders in pushReq £ Po,up = Do | Diup — Di-
Requests from the left are forwarded to the links p, up O s p, to be pushed
further upwards with pushReq. Moreover, in order to combine requests from the
left with requests from the right side, all left requests are forwarded to the right
side over m, and m;. Thus left requests are processed by two simple forwarders,
procLeftOutReq £ p, — {my,, Po,up} and procLeftinReq £ p; — {m;, pi.up}-
The processing of requests from the right is more difficult. Intuitively, the
encoding ensures that any request of the left side is combined exactly once with
each opposite request of the right side. Then, the respective first parameters
of each pair of requests are matched, to reveal a pair that results from the
translation of matching communication partners. If such a pair is found, then the

LL|’7

218 K. Peters and U. Nestmann

information necessary to resolve the respective test-statement are retransmitted
over the receiver lock back to the receiver, where the test-statement completes
the emulation in case of positive instantiated sum locks. To avoid deadlock, the
sum lock of the left request is always checked first. Since the encoding relies on
the parallel structure of the source term, which is a binary tree, to prefer always
the left lock indeed results in a total ordering of the sum locks.

procRightOutReq 2 ¢, (m;) | co™ (my) .po (v, ls, 5, 2) (
(v mip) (™ ' o) [y =y (b, by 8, 2) | Magup (Y 4 7))
| (v mi) (miup — mi | o (mi)))
| Po,up <y7 ls, s, Z>)
procRightlnReq 2 ¢; (m,) | ¢;* (mo) .pi (y, b, 1) (
(v moup) (Mo™ (¥ 15, 8,2) - (Y =y] {ls b ls, 8,2) | Moyup (Y b5, 8, 2))
| (v m,) (mo,up - My | ¢ <m0>))

| pi,up <y7 Lﬁ T>)

In order to emulate arbitrary source term steps, all pairs of left and right requests
have to be checked at least once. On the other side, a careless checking of the
same pairs infinitely often introduces divergence. Thus, only a single copy of
each left request is transmitted to the right side and, there, each pair of left and
right requests is combined exactly once. To do so, the right requests are linked
together within two chains; one for right output requests and one for right input
requests. The first member of the chain receives all left requests via m, or m;,
combines them with its own information, and sends a copy of each left request
to the next member over mg, ,, Or My p, respectively. Subsequent members of
a chain are linked by m, or m,, i.e., each member creates a new version of
the corresponding name and sends this new version over ¢, or ¢; to enable the
addition of a new member. Moreover, it transmits all received left requests along
this new version. A new member is then added to the chain by the consumption
of its request, also triggering to transmit a copy to pushReq via po vup OF Di up-
Finally restriction, match, and success are translated rigidly:

[va) P = (e @) [PIL
[la=b]P] £ [¢x (@) =¢r ®) I[P
[VIZ = v

a

(1>

In the discussion so far, we omitted the encoding of replicated input, because
it is slightly tricky. The crux is that each replicated input implicitly represents
an unbounded number of copies of the respective input in parallel. Each such
copy changes the parallel structure of the source term, on which our encoding
function relies. Obviously, a compositional encoding can not first compute the
number of required copies. By the reduction semantics, the copies of a replicated
input are generated as soon they are needed. Likewise, the encoding of replicated

Is It a “Good” Encoding of Mixed Choice? 219

input adds a branch to the constructed parallel structure, for each emulated
communication with a replicated input. To do so, it adapts the parallel operator
translation for each unguarded continuation in encodedContinuations.

[[y* (l‘) P]];Il £ (V l7 Ty Cr1,Cr2,To, 7”7;) (p’t <y7 l7 T>
| r* (=, —,ls,s,x) test Is then Is (L) | s | crs () else ls (L)
| i (y, 1, 7) | 1(T) | encodedContinuations)

To direct the flow of requests among the additional branches, they are again
ordered into a chain.

encodedContinuations £ ¢.o (1o, 73) | ¢r1™ (2) .Cro (70, 75) -

(V Mo, Miy Po,ups Pi,ups To,ups Ti,ups Cos Ciy Mo, up, mi,up) (pushRqun
| (vpo,pi) ([P, | procRightOutReq | procRightInReq)

| (v7ro,m:) (cre (1o, i) | pushReqOut))

For each successful emulation on a replicated input, a new branch with the en-
coded continuation is unguarded by transmitting the received source term value
over ¢r;. As in the chains of right requests, each branch in encodedContinuations
restricts its own versions of r, and r; to receive all requests from its succes-
sor. These links are transmitted over ¢, to the respective next member. The
translation of the replicated input serves itself as first member of the chain by
providing its own request over r;. Note that the third line of encodedContinua-
tions is exactly the same as the right side of a parallel operator encoding. There,
all received requests are combined with the requests of the respective continu-
ation to enable the emulation of a communication with the replicated input or
another of its unguarded continuations. Moreover, to enable an emulation of a
communication with the rest of the term, its requests are pushed upwards. The
remaining terms pushReqln and pushReqOut direct the flow of requests.

pushReqln £ 7, — {Mo, Toupt | Ti = {Mi, Tiup}

L

pushReqOut Poup = {pm ro} I Toup = To | Pijup = {ph ri} I Tiup = T4
pushReqln receives all requests from a predecessor in the chain and forwards
one copy to the encoded continuation over m, and m; and one copy to pushRe-
qOut. There, all requests of the encoded continuation are pushed upwards to a
surrounding parallel operator encoding over p, or p;, and for all such requests
and all requests received from a previous member, a copy is forwarded to the
successor over 1, or ;.

For a more exhaustive description of the algorithm implemented by this encod-
ing and how it emulates source term steps, we refer to the proof of its correctness
in [PN12].

Theorem 1. The encodings [- | and [-].. are good.

220 K. Peters and U. Nestmann

Observations

The existence of a good encoding from 7y, into 7, shows that 7, is as expressive
as 7y, with respect to the abstract behaviour of terms. This looks surprising.
From [Pal03] [Gor10l [PN10], we know that it is not possible to implement mixed
choice without introducing some additional amount of coordination. The exis-
tence of the good encoding [-]]Z1 proves that, to do so, no global coordination
is necessary. Instead the little amount of local coordination, which is allowed
in compositional encodings, suffices to completely implement the full power of
mixed (guarded) choice within an asynchronous and thus choice-free setting.

However, the encoding presented above comes with some drawbacks. The
most crucial of these drawbacks—at least with respect to efficiency measures—is
the impact of the encoding function on the degree of distribution of source
terms. We consider this problem in the next section. Another drawback is the
necessity of the match operator in the target language. Examining the proof of
the main result in [PSNII], we observe that it already indicates how to solve
the problem of the deadlocks in the test-statements of [-]>. Moreover, it reveals
a second solution to that problem. Instead of implementing an algorithm to
order the sum locks, we could always test the sum lock of the receiver first,
if we restrict the number of emulations that can be performed simultaneously.
To do so, we augment [-]* with an aditional coordinator lock—an output c
on a new channel c—for each encoding of a parallel operator and require that
this lock must be available in order to send an output over the receiver lock r.
Then, each completion of a test-statement in the encoding of input or replicate
input—regardless of its outcome—restores the coordinator lock of the respective
parallel operator encoding. Due to the restriction of simultaneous emulations, the
impact of such an encoding on the degree of distribution of source terms is even
worse than it is the case for [-]]f1 However, for both solutions, it is necessary
to send some kind of input and output requests and to combine requests of
communication partners in order to emulate a communication step. Due to scope
extrusion in the source and the necessity in the target to restrict the request
channels, we cannot ensure that the requests of different source term steps can be
distinguished by their channel names. Thus, to examine which pairs of requests
refer to matching communication partners, we need the matching primitive.

A problem that already occurs in [-]]i is the introduction of observable junk,
i.e., of observable remainders left over by further emulations. In my,, if we perform
a step on a summand of a sum, immediately any other summand of that sum
disappears. In the implementation, we have to split up the encoded summands
in parallel, such that it is not possible to immediately withdraw the encoded
summands as soon as one summand is used within an emulation. In [- [and
[-]2 such observable junk is marked by a false instantiation of its sum locks.
As a consequence, the encodings are not good w.r.t. a standard equivalence
=, as asynchronous barbed congruence. However, for both encodings, we can
prove correctness with respect to a non trivial variant of barbed equivalence, by
redefining the notion of barbs to the result of translating source term barbs. The
result is a congruence w.r.t. contexts that respect the protocol of the encoding.

Is It a “Good” Encoding of Mixed Choice? 221

As mentioned above, our encoding [- |" augments the parallel structure of
source terms to order sum locks. Accordingly, another parallel structure of the
source—e.g. as a result of applying the rule P | Q@ = Q | P to it—results in a
different order of the respective sum locks. Hence, it is possible that, for some
source terms Sy and Sz, the target terms [Sy | So [and [Sz | S1]) differ in
the number of necessary pre- or postprocessing steps within an emulation, but
also in the reachability of “intermediate”, i.e.: “partially committed”, states.
Although these states exhibit different observables, their differences do not in-
troduce deadlock or influence the possibility to emulate source term steps, i.e.
[S1]82]) and [S| Sy], still have the same abstract behaviour. Interest-
ingly, the alternative solution on coordinator locks reveals similar problems with
therule P | (Q | R) = (P | Q) | R. To overcome this problem, the equivalence <
has either to abstract from the reachability of intermediate states or we have to
avoid the rule CONG in our reduction semantics.

For a more formal and exhaustive discussion of these drawbacks and a def-
inition of the used equivalences, we refer to [PN12]. We believe that none of
the described drawbacks can be circumvented. In this sense, we think that the
encoding [-]];n given above is the best encoding from 7, into 7, we can achieve.

4 Distributability

The first result comparing the expressive power of m,, and 7, is given by the
separation result in [Pal03]. The main difference to our encodability result in
the last section is due to the requirement on the rigid translation of “|”. This
requirement ensures that the encoding “preserves the degree of distribution” of
the source term, which—thinking of distributed computing systems—is a crucial
measure for the efficiency of such an encoding. A distributed system is a network
of parallel processes. Accordingly, a distributed algorithm is an algorithm that
may perform at least some of its tasks in parallel. Therefore, a main issue when
considering an encoding between distributed algorithms is to ensure that it does
not sequentialise all tasks by introducing a global coordinator. On the other
side, the rigid translation of the parallel operator is a rather hard requirement.
Therefore, Gorla instead requires the compositional translation of all source term
operators. Note that also this requirement already prevents the use of global
coordinators. In that view, compositionality can be seen as a minimal criterion
to ensure the preservation of the degree of distribution.

However, sometimes—as in the current case—compositionality alone is too
weak to consider the preservation of the degree of distribution, because it still
allows for local coordinators: a compositional encoding may still sequentialise
some of the parallel tasks of a distributed algorithm. If we are not only interested
in the expressive power in terms of the abstract behaviour but additionally in how
far problems can be solved exploiting at least the same degree of distribution,
we must consider an additional criterion.

Up to now, there have been various approaches to explicitly consider the con-
current execution of independent steps directly within an operational semantics,
often called step semantics (e.g., [Lan07] for the case of process calculi), and also

222 K. Peters and U. Nestmann

in the form of dedicated behavioral equivalences. In our case, we do not want to
explicitly quantify the degree of distribution in the source and the target term,
but only to measure whether it is preserved by an encodings. To this aim, we
choose a simple and intuitive formulation—in the style of Gorla’s criteria—of
our additional requirement based on the notion of parallel component.

Note that it does not suffice to consider the initial degree of distribution, i.e.,
to require that each source term and its encoding are distributed in the same
way. We also have to require, that whenever a part of a source term can solve a
task independently of the rest—i.e., it can reduce on its own—then the respective
part of its encoding must also be able to emulate this reduction independent of
the rest of the encoded term. Accordingly, we require that not only the source
term and its encoding are distributed in the same way, but also their derivatives.
In the following, =; is the usual structural congruence naturally of the source
language and =4 is the usual structural congruence of the target language.

Definition 5. An encoding [- | preserves the degree of distribution if, for every
S such that S =1 S1| ... | Sn and S; = S! for all i with 1 < i < n, there
exists Th, ..., T, and a context C with n holes such that [S] =2 C (T1,...,Tn)
and T; =< [S]] for all i with 1 <1i <n.

Here, the context C is introduced to allow, e.g., for some global restrictions or
parts of the encoded term that may be necessary to emulate communications
between S; and S; for ¢ # j. This only makes sense because compositionality
already rules out global coordinators. Since the parallel operator is considered
to be binary, context C can be the result of assembling parts of the contexts
introduced by several parallel operator encodings. In essence, the requirement in
Definition [l is a concurrency-enhanced adaptation of operational completeness:
whenever a source term can perform n steps in parallel, then its encoding must
be able to emulate all n steps in parallel; note that the 7T; must be able to move
independent of the context C. So, Definition [l describes a semantic criterion.

Definition [l is not the only way to measure the preservation of the degree
of distribution. However, when considering the degree of distribution, we find
it natural and appealing to require that parallel source term steps can be emu-
lated truly in parallel, i.e., that for each pair of independent source term steps
there is at least the possibility to emulate them independently. Moreover, by
the following consideration, we observe that this requirement indeed suffices to
reveal a fundamental difference in the expressive power of m, compared to g
or m, considering the degree of distribution. Since [-]]ZL translates the parallel
operator rigidly, it naturally preserves the degree of distribution.

Lemma 1. The encoding [-]]Z preserves the degree of distribution.

Notably, in the proof of the lemma above we do not use any features of the encod-
ing [-]]ZL except that it satisfies operational completeness, i.e., it is a good encod-
ing, translates the parallel operator rigidly, and preserves structural congruence.
So, any such encoding preserves the degree of distribution. Not surprisingly, the
most crucial requirement here is the rigid translation of “|”.

Is It a “Good” Encoding of Mixed Choice? 223

Lemma 2. Any good encoding, that translates the parallel operator rigidly and pre-
serves enough of the structural congruence on source terms to ensure that S =1 S |
v | Spoimplies [S]=2[S1]...]Sn], preserves the degree of distribution.

Thus, the (semantic) criterion formalised in Definition [] can be considered to
be at most as hard as the (syntactic) criterion to rigidly translate the parallel
operator. To see that it is not an equivalent requirement, but indeed strictly
weaker, we may consider an encoding (spelled out in [PN12]) from 7y, (without
replicated input) into 72, the asynchronous m-calculus augmented with a two-
level polyadic synchronisation by Carbone and Maffeis [CM03]. It is a simplified
version of the encoding [-]I, based on the same way to order sum locks but
without the necessity to link right requests in chains. To prove that it is good,
an argumentation similar as for [-] can be applied. Moreover, [CM03] prove
that there is no good encoding from 7y, into 72 that translates “|” rigidly; this
separation result does not rely on replication, i.e., it also implies that there is
no such encoding from 7, without replicated input into 72. On the other side,
since all parts of the context introduced by the parallel operator encoding are
replicated inputs, it preserves the degree of distribution.

The encoding [-] does not preserve the degree of distribution, because we
can not distribute the linking of right requests within a chain at the right side
of a parallel operator encoding. Because of that, all steps on communication
partners that meet at the same parallel operator in the source term, can never
be emulated independently even if the source term steps are.

Lemma 3. The encoding [-]]f1 does not preserve the degree of distribution.

This lemma is not due to an awkward design of the encoding function [-]];n,
but is a general restriction on the encodability of mixed choice, i.e., it is not
possible to design a good encoding from 7, into 7, that preserves the degree of
distribution. This fact is a direct consequence of the theorem proved in [PSNT1I].

Theorem 2. There is no good encoding from my into w, that preserves the
degree of distribution.

5 Conclusion

We present a novel and for some readers perhaps surprising encodability result,
showing that the asynchronous m-calculs is “as expressive as” the synchronous
m-calculus with mixed choice, if the non-rigid translation of parallel composition
is allowed. Furthermore, we present a fundamental limitation of each good en-
coding between these two languages concerning a novel criterion that measures
the preservation of the degree of distribution. In contrast to the three semantic
criteria of operational correspondence, divergence reflection, and success sensi-
tivity, our new criterion does not primarily consider the (abstract) behaviour
of terms but an additional dimension: the potential for concurrent execution.
We conclude that considering the behaviour of terms, the full m-calculus and its
asynchronous variant have the same expressive power. Our result complements

224 K. Peters and U. Nestmann

Palamidessi’s result [Pal03], as her rigidity criterion includes more than just ab-
stract behavior. Likewise, as expected, then translating a my-algorithm into a
ma-algorithm by such an encoding, one must tolerate losses in the efficiency of the
respective algorithm—which Palamidessi’s rigidity requirement would forbid.

Note that the separation of criteria considering the behaviour from additional
requirements as the degree of distribution offers additional advantages, because
we can more easily analyse the reasons of separation results and in how far they
limit the degree of distribution of the encoded algorithm. There is no way to
overcome the theoretical border stated by our separation result. However, the
proof that an encoding does not preserve the degree of distribution can point
out ways to nevertheless optimise a translation of algorithms, because it exactly
states which parts can not be distributed.

Of course, only a study of other process calculi and corresponding encoding
functions can reveal whether the proposed criterion is suited to measure the
degree of distribution in general.

Acknowledgements. We thank Daniele Gorla for his very constructive com-
ments and some fruitful discussions on preliminary versions of this work.

References

[Bou92] Boudol, G.: Asynchrony and the m-calculus (note). Note, INRIA (May 1992)

[CMO03] Carbone, M., Maffeis, S.: On the Expressive Power of Polyadic Synchronisa-
tion in m-Calculus. Nordic Journal of Computing 10, 1-29 (2003)

[Gor08] Gorla, D.: Towards a Unified Approach to Encodability and Separation Re-
sults for Process Calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 492-507. Springer, Heidelberg (2008)

[Gor10] Gorla, D.: Towards a Unified Approach to Encodability and Separation Results
for Process Calculi. Information and Computation 208(9), 1031-1053 (2010)

[HT91] Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communi-
cation. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133-147.
Springer, Heidelberg (1991)

[Lan07] Lanese, I.: Concurrent and Located Synchronizations in 7-Calculus. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., P14sil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 388-399. Springer, Heidelberg (2007)

[Nes00] Nestmann, U.: What is a ”Good” Encoding of Guarded Choice? Information
and Computation 156(1-2), 287-319 (2000)

[Pal03] Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the
Asynchronous 7-calculi. Mathematical Structures in Computer Science 13(5),
685-719 (2003)

[PN10] Peters, K., Nestmann, U.: Breaking Symmetries. In: Froschle, S.B., Valencia,
F.D. (eds.) EXPRESS. EPTCS, vol. 41, pp. 136-150 (2010)

[PN12] Peters, K., Nestmann, U.: Is it a ”Good” Encoding of Mixed Choice? (Tech-
nical Report). Technical Report, TU Berlin, Germany (January 2012),
http://arxiv.org/corr/home

[PSN11] Peters, K., Schicke-Uffmann, J.-W., Nestmann, U.: Synchrony vs Causal-
ity in the Asynchronous Pi-Calculus. In: Luttik, B., Valencia, F.D. (eds.)
EXPRESS. EPTCS, vol. 64, pp. 89-103 (2011)

[SWO01] Sangiorgi, D., Walker, D.: The w-calculus: A Theory of Mobile Processes.
Cambridge University Press, New York (2001)

http://arxiv.org/corr/home

	Is It a “Good” Encoding of Mixed Choice?

	Introduction
	Technical Preliminaries
	The π-Calculus
	Abbreviations
	Quality Criteria for Encodings

	Encoding Mixed Choice
	Distributability
	Conclusion
	References

