Skip to main content

Tuberculosis Drug Discovery: Target Identification and Validation

  • Chapter
  • First Online:
Drug Discovery in Africa
  • 1226 Accesses

Abstract

Tuberculosis (TB) is a global problem that disproportionately affects a handful of high-burden countries, many of which are located in sub-Saharan Africa. Efforts to combat TB in endemic regions focus on health policy, especially prevention and intervention strategies. Research activities, including those relating to TB drug discovery, are sporadic and, in many cases, driven by the force of a single personality or research group in the absence of a national research agenda. Instead, these countries are often limited to a valuable, but passive, role as research and clinical trial sites for international organizations and pharmaceutical companies. In this chapter, we review current approaches to the identification and validation of potential targets for novel therapeutic interventions against Mycobacterium tuberculosis, an organism that continues to devastate public health systems throughout Africa as causative agent of TB. In addition, we highlight local (South African) research programmes which have contributed to these efforts. Consistent with the significant scientific, technical and financial obstacles confronting TB research, our analysis documents the existence of very few programmes in this region that are dedicated to this challenging, yet fundamental, aspect of TB drug discovery. However, the recent shift internationally to a hybrid model in which academic laboratories drive many aspects of the drug development process—including target identification and validation efforts—in collaboration with major industrial partners holds considerable promise for the expansion of local basic science research programmes in the domain of future TB drug discovery, especially where actively supported by local government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufmann SH, Parida SK (2007) Changing funding patterns in tuberculosis. Nat Med 13:299–303

    Article  CAS  Google Scholar 

  2. Salazar EJ (2011) Tuberculosis Research and Development: 2010 Report on Tuberculosis Research Funding Trends, 2005–2009

    Google Scholar 

  3. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490

    Article  CAS  Google Scholar 

  4. Ma Z, Lienhardt C, McIlleron H, Nunn AJ, Wang X (2010) Global tuberculosis drug development pipeline: the need and the reality. Lancet 375:2100–2109

    Article  Google Scholar 

  5. WHO (2010) Global Tuberculosis Control: WHO Report 2010

    Google Scholar 

  6. Dye C, Williams BG (2010) The population dynamics and control of tuberculosis. Science 328:856–861

    Article  CAS  Google Scholar 

  7. Lawn SD, Zumla AI (2011) Tuberculosis. Lancet 57:57–72

    Article  Google Scholar 

  8. Andersen P, Doherty TM (2005) The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3:656–662

    Article  CAS  Google Scholar 

  9. Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, Ziazarifi AH, Hoffner SE (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136:420–425

    Article  Google Scholar 

  10. Dheda K, Shean K, Zumla A, Badri M, Streicher EM, Page-Shipp L, Willcox P, John MA, Reubenson G, Govindasamy D, Wong M, Padanilam X, Dziwiecki A, van Helden PD, Siwendu S, Jarand J, Menezes CN, Burns A, Victor T, Warren R, Grobusch MP, van der Walt M, Kvasnovsky C (2010) Early treatment outcomes and HIV status of patients with extensively drug-resistant tuberculosis in South Africa: a retrospective cohort study. Lancet 375:1798–1807

    Article  Google Scholar 

  11. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375:1830–1843

    Article  Google Scholar 

  12. Donald PR, Maritz JS, Diacon AH (2011) The pharmacokinetics and pharmacodynamics of rifampicin in adults and children in relation to the dosage recommended for children. Tuberculosis (Edinb) 91:196–207

    Article  CAS  Google Scholar 

  13. Balganesh TS, Alzari PM, Cole ST (2008) Rising standards for tuberculosis drug development. Trends Pharmacol Sci 29:576–581

    Article  CAS  Google Scholar 

  14. Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–855

    CAS  Google Scholar 

  15. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    Article  CAS  Google Scholar 

  16. Warner DF, Mizrahi V (2008) Physiology of Mycobacterium tuberculosis. In: Kaufmann SH, Rubin H (eds) Handbook of tuberculosis: Molecular biology and biochemistry. Wiley-VCH GmbH & Co., Weinheim, pp 53–70

    Google Scholar 

  17. Warner DF, Mizrahi V (2006) Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 19:558–570

    Article  CAS  Google Scholar 

  18. Russell DG, Barry CE 3rd, Flynn JL (2010) Tuberculosis: what we don't know can, and does, hurt us. Science 328:852–856

    Article  CAS  Google Scholar 

  19. Rhee KY, Carvalho LP, Bryk R, Ehrt S, Marrero J, Park SW, Schnappinger D, Venugopal A, Nathan C (2011) Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19:307–314

    Article  CAS  Google Scholar 

  20. Boshoff HI, Barry CE 3rd (2005) Tuberculosis – metabolism and respiration in the absence of growth. Nat Rev Microbiol 3:70–80

    Article  CAS  Google Scholar 

  21. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  Google Scholar 

  22. Djelouadji Z, Raoult D, Drancourt M (2011) Palaeogenomics of Mycobacterium tuberculosis: epidemic bursts with a degrading genome. Lancet Infect Dis 11:641–650

    Article  Google Scholar 

  23. Pethe K, Sequeira PC, Agarwalla S, Rhee K, Kuhen K, Phong WY, Patel V, Beer D, Walker JR, Duraiswamy J, Jiricek J, Keller TH, Chatterjee A, Tan MP, Ujjini M, Rao SP, Camacho L, Bifani P, Mak PA, Ma I, Barnes SW, Chen Z, Plouffe D, Thayalan P, Ng SH, Au M, Lee BH, Tan BH, Ravindran S, Nanjundappa M, Lin X, Goh A, Lakshminarayana SB, Shoen C, Cynamon M, Kreiswirth B, Dartois V, Peters EC, Glynne R, Brenner S, Dick T (2010) A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun 1:57

    Article  Google Scholar 

  24. Young D (2009) Animal models of tuberculosis. Eur J Immunol 39:2011–2014

    Article  CAS  Google Scholar 

  25. Gey van Pittius NC, Sampson SL, Lee H, Kim Y, van Helden PD, Warren RM (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6:95

    Article  CAS  Google Scholar 

  26. Camus JC, Pryor MJ, Medigue C, Cole ST (2002) Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148:2967–2973

    CAS  Google Scholar 

  27. Lew JM, Kapopoulou A, Jones LM, Cole ST (2011) TubercuList – 10 years after. Tuberculosis (Edinb) 91:1–7

    Article  Google Scholar 

  28. Sacchettini JC, Rubin EJ, Freundlich JS (2008) Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat Rev Microbiol 6:41–52

    Article  CAS  Google Scholar 

  29. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994

    Article  CAS  Google Scholar 

  30. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    Article  CAS  Google Scholar 

  31. Warner DF, Mizrahi V (2004) Mycobacterial genetics in target validation. Drug Discov Today Technol 1:93–98

    Article  CAS  Google Scholar 

  32. Hasan S, Daugelat S, Rao PS, Schreiber M (2006) Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput Biol 2:e61

    Article  CAS  Google Scholar 

  33. Warner DF, Savvi S, Mizrahi V, Dawes SS (2007) A riboswitch regulates expression of the coenzyme B12-independent methionine synthase in Mycobacterium tuberculosis: implications for differential methionine synthase function in strains H37Rv and CDC1551. J Bacteriol 189:3655–3659

    Article  CAS  Google Scholar 

  34. McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738

    Article  CAS  Google Scholar 

  35. Russell DG (2011) Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 240:252–268

    Article  CAS  Google Scholar 

  36. Davis SL, Be NA, Lamichhane G, Nimmagadda S, Pomper MG, Bishai WR, Jain SK (2009) Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS One 4:e6297

    Article  CAS  Google Scholar 

  37. Young DB, Perkins MD, Duncan K, Barry CE 3rd (2008) Confronting the scientific obstacles to global control of tuberculosis. J Clin Invest 118:1255–1265

    Article  CAS  Google Scholar 

  38. Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C (2011) Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9:21–31

    Article  CAS  Google Scholar 

  39. de Carvalho LP, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY (2010) Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17:1122–1131

    Article  CAS  Google Scholar 

  40. Stumpf MP, Robertson BD, Duncan K, Young DB (2007) Systems biology and its impact on anti-infective drug development. Prog Drug Res 64(1):3–20

    Google Scholar 

  41. Young D, Stark J, Kirschner D (2008) Systems biology of persistent infection: tuberculosis as a case study. Nat Rev Microbiol 6:520–528

    Article  CAS  Google Scholar 

  42. Beste DJ, McFadden J (2010) System-level strategies for studying the metabolism of Mycobacterium tuberculosis. Mol Biosyst 6:2363–2372

    Article  CAS  Google Scholar 

  43. Spitzer M, Griffiths E, Blakely KM, Wildenhain J, Ejim L, Rossi L, De Pascale G, Curak J, Brown E, Tyers M, Wright GD (2011) Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol 7:499

    Article  Google Scholar 

  44. Schwegmann A, Brombacher F (2008) Host-directed drug targeting of factors hijacked by pathogens. Sci Signal 1:re8

    Article  Google Scholar 

  45. Manjunatha U, Boshoff HI, Barry CE (2009) The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun Integr Biol 2:215–218

    Article  CAS  Google Scholar 

  46. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227

    Article  CAS  Google Scholar 

  47. Riccardi G, Pasca MR, Buroni S (2009) Mycobacterium tuberculosis: drug resistance and future perspectives. Future Microbiol 4:597–614

    Article  CAS  Google Scholar 

  48. Keren I, Minami S, Rubin E, Lewis K (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2:e00100-11

    Google Scholar 

  49. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG (2007) Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:1380–1385

    Article  CAS  Google Scholar 

  50. Blumenthal A, Trujillo C, Ehrt S, Schnappinger D (2010) Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS One 5:e15667

    Article  CAS  Google Scholar 

  51. Bryk R, Gold B, Venugopal A, Singh J, Samy R, Pupek K, Cao H, Popescu C, Gurney M, Hotha S, Cherian J, Rhee K, Ly L, Converse PJ, Ehrt S, Vandal O, Jiang X, Schneider J, Lin G, Nathan C (2008) Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3:137–145

    Article  CAS  Google Scholar 

  52. Lamichhane G (2011) Novel targets in M. tuberculosis: search for new drugs. Trends Mol Med 17:25–33

    Article  CAS  Google Scholar 

  53. Wei JR, Rubin EJ (2008) The many roads to essential genes. Tuberculosis (Edinb) 88(Suppl 1):19–24

    Article  Google Scholar 

  54. Ioerger TR, Feng Y, Ganesula K, Chen X, Dobos KM, Fortune S, Jacobs WR Jr, Mizrahi V, Parish T, Rubin E, Sassetti C, Sacchettini JC (2010) Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. J Bacteriol 192:3645–3653

    Article  CAS  Google Scholar 

  55. Joshi SM, Pandey AK, Capite N, Fortune SM, Rubin EJ, Sassetti CM (2006) Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci USA 103:11760–11765

    Article  CAS  Google Scholar 

  56. Baek SH, Li AH, Sassetti CM (2011) Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9:e1001065

    Article  CAS  Google Scholar 

  57. Beste DJ, Espasa M, Bonde B, Kierzek AM, Stewart GR, McFadden J (2009) The genetic requirements for fast and slow growth in mycobacteria. PLoS One 4:e5349

    Article  CAS  Google Scholar 

  58. Stallings CL, Stephanou NC, Chu L, Hochschild A, Nickels BE, Glickman MS (2009) CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 138:146–159

    Article  CAS  Google Scholar 

  59. Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S (2007) In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13:1515–1520

    Article  CAS  Google Scholar 

  60. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107:9819–9824

    Article  CAS  Google Scholar 

  61. Blokpoel MC, Murphy HN, O'Toole R, Wiles S, Runn ES, Stewart GR, Young DB, Robertson BD (2005) Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res 33:e22

    Article  CAS  Google Scholar 

  62. Korycka-Machala M, Rychta E, Brzostek A, Sayer HR, Rumijowska-Galewicz A, Bowater RP, Dziadek JMM (2007) Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob Agents Chemother 51:2888–2897

    Article  CAS  Google Scholar 

  63. Wei JR, Krishnamoorthy V, Murphy K, Kim JH, Schnappinger D, Alber T, Sassetti CM, Rhee KY, Rubin EJ (2011) Depletion of antibiotic targets has widely varying effects on growth. Proc Natl Acad Sci USA 108:4176–4181

    Article  CAS  Google Scholar 

  64. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538

    Article  CAS  Google Scholar 

  65. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  Google Scholar 

  66. Makarov V, Manina G, Mikusova K, Mollmann U, Ryabova O, Saint-Joanis B, Dhar N, Pasca MR, Buroni S, Lucarelli AP, Milano A, De Rossi E, Belanova M, Bobovska A, Dianiskova P, Kordulakova J, Sala C, Fullam E, Schneider P, McKinney JD, Brodin P, Christophe T, Waddell S, Butcher P, Albrethsen J, Rosenkrands I, Brosch R, Nandi V, Bharath S, Gaonkar S, Shandil RK, Balasubramanian V, Balganesh T, Tyagi S, Grosset J, Riccardi G, Cole ST (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324:801–804

    Article  CAS  Google Scholar 

  67. Christophe T, Jackson M, Jeon HK, Fenistein D, Contreras-Dominguez M, Kim J, Genovesio A, Carralot JP, Ewann F, Kim EH, Lee SY, Kang S, Seo MJ, Park EJ, Skovierova H, Pham H, Riccardi G, Nam JY, Marsollier L, Kempf M, Joly-Guillou ML, Oh T, Shin WK, No Z, Nehrbass U, Brosch R, Cole ST, Brodin P (2009) High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog 5:e1000645

    Article  CAS  Google Scholar 

  68. Wood R, Lawn SD, Johnstone-Robertson S, Bekker LG (2011) Tuberculosis control has failed in South Africa – time to reappraise strategy. S Afr Med J 101:111–114

    Google Scholar 

  69. Zager EM, McNerney R (2008) Multidrug-resistant tuberculosis. BMC Infect Dis 8:10

    Article  Google Scholar 

  70. Cox HS, McDermid C, Azevedo V, Muller O, Coetzee D, Simpson J, Barnard M, Coetzee G, van Cutsem G, Goemaere E (2010) Epidemic levels of drug resistant tuberculosis (MDR and XDR-TB) in a high HIV prevalence setting in Khayelitsha, South Africa. PLoS One 5:e13901

    Article  CAS  Google Scholar 

  71. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311

    Article  CAS  Google Scholar 

  72. Borrell S, Gagneux S (2011) Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 17:815–820

    Article  CAS  Google Scholar 

  73. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6:e2

    Article  CAS  Google Scholar 

  74. Smith PA, Romesberg FE (2007) Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat Chem Biol 3:549–556

    Article  CAS  Google Scholar 

  75. Gorna AE, Bowater RP, Dziadek J (2010) DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci (Lond) 119:187–202

    Article  CAS  Google Scholar 

  76. Warner DF (2010) The role of DNA repair in M. tuberculosis pathogenesis. Drug Discov Today Dis Mech 7:e5

    Article  CAS  Google Scholar 

  77. Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR (2009) A replication clock for Mycobacterium tuberculosis. Nat Med 15:211–214

    Article  CAS  Google Scholar 

  78. Ciulli A, Abell C (2007) Fragment-based approaches to enzyme inhibition. Curr Opin Biotechnol 18:489–496

    Article  CAS  Google Scholar 

  79. Mizrahi V, Andersen SJ (1998) DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol Microbiol 29:1331–1339

    Article  CAS  Google Scholar 

  80. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: insights into the Phagosomal Environment. J Exp Med 198:693–704

    Article  CAS  Google Scholar 

  81. Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101:4602–4607

    Article  CAS  Google Scholar 

  82. Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, Mollenkopf H, Kosmiadi GA, Eisenberg D, Kaufmann SH (2006) Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74:1233–1242

    Article  CAS  Google Scholar 

  83. Durbach SI, Springer B, Machowski EE, North RJ, Papavinasasundaram KG, Colston MJ, Bottger EC, Mizrahi V (2003) DNA alkylation damage as a sensor of nitrosative stress in Mycobacterium tuberculosis. Infect Immun 71:997–1000

    Article  CAS  Google Scholar 

  84. Kana BD, Abrahams GL, Sung N, Warner DF, Gordhan BG, Machowski EE, Tsenova L, Sacchettini JC, Stoker NG, Kaplan G, Mizrahi V (2010) Role of the DinB homologs Rv1537 and Rv3056 in Mycobacterium tuberculosis. J Bacteriol 192:2220–2227

    Article  CAS  Google Scholar 

  85. Boshoff HI, Reed MB, Barry CE 3rd, Mizrahi V (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113:183–193

    Article  CAS  Google Scholar 

  86. Warner DF, Ndwandwe DE, Abrahams GL, Kana BD, Machowski EE, Venclovas C, Mizrahi V (2010) Essential roles for imuA'- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107:13093–13098

    Article  CAS  Google Scholar 

  87. Dawes SS, Warner DF, Tsenova L, Timm J, McKinney JD, Kaplan G, Rubin H, Mizrahi V (2003) Ribonucleotide reduction in Mycobacterium tuberculosis: function and expression of genes encoding class Ib and class II ribonucleotide reductases. Infect Immun 71:6124–6131

    Article  CAS  Google Scholar 

  88. Mowa MB, Warner DF, Kaplan G, Kana BD, Mizrahi V (2009) Function and regulation of class I ribonucleotide reductase-encoding genes in mycobacteria. J Bacteriol 191:985–995

    Article  CAS  Google Scholar 

  89. Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V, Dawes SS (2008) Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190:3886–3895

    Article  CAS  Google Scholar 

  90. Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD (2006) Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60:1109–1022

    Article  CAS  Google Scholar 

  91. Williams MJ, Kana BD, Mizrahi V (2011) Functional analysis of molybdopterin biosynthesis in mycobacteria identifies a fused molybdopterin synthase in Mycobacterium tuberculosis. J Bacteriol 193:98–106

    Article  CAS  Google Scholar 

  92. Kana BD, Mizrahi V (2010) Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol Med Microbiol 58:39–50

    Article  CAS  Google Scholar 

  93. Kana BD, Gordhan BG, Downing KJ, Sung N, Vostroktunova G, Machowski EE, Tsenova L, Young M, Kaprelyants A, Kaplan G, Mizrahi V (2008) The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 67:672–684

    Article  CAS  Google Scholar 

  94. Kana BD, Mizrahi V, Gordhan BG (2010) Depletion of resuscitation-promoting factors has limited impact on the drug susceptibility of Mycobacterium tuberculosis. J Antimicrob Chemother 65:1583–1585

    Article  CAS  Google Scholar 

  95. Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5:e75

    Article  CAS  Google Scholar 

  96. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–220

    Article  CAS  Google Scholar 

  97. Mukamolova GV, Turapov O, Malkin J, Woltmann G, Barer MR (2010) Resuscitation-promoting factors reveal an occult population of tubercle Bacilli in Sputum. Am J Respir Crit Care Med 181:174–180

    Article  CAS  Google Scholar 

  98. Gordhan BG, Smith DA, Kana BD, Bancroft G, Mizrahi V (2006) The carbon starvation-inducible genes Rv2557 and Rv2558 of Mycobacterium tuberculosis are not required for long-term survival under carbon starvation and for virulence in SCID mice. Tuberculosis (Edinb) 86:430–437

    Article  CAS  Google Scholar 

  99. Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA 102:8327–8332

    Article  CAS  Google Scholar 

  100. Gordhan BG, Smith DA, Alderton H, McAdam RA, Bancroft GJ, Mizrahi V (2002) Construction and phenotypic characterization of an auxotrophic mutant of Mycobacterium tuberculosis defective in L-arginine biosynthesis. Infect Immun 70:3080–3084

    Article  CAS  Google Scholar 

  101. Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC (2009) Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell 36:845–860

    Article  CAS  Google Scholar 

  102. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519

    Article  CAS  Google Scholar 

  103. Gammon DW, Steenkamp DJ, Mavumengwana V, Marakalala MJ, Mudzunga TT, Hunter R, Munyololo M (2010) Conjugates of plumbagin and phenyl-2-amino-1-thioglucoside inhibit MshB, a deacetylase involved in the biosynthesis of mycothiol. Bioorg Med Chem 18:2501–2514

    Article  CAS  Google Scholar 

  104. Harper CJ, Hayward D, Kidd M, Wiid I, van Helden P (2010) Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis. BMC Microbiol 10:138

    Article  CAS  Google Scholar 

  105. Hayward D, van Helden PD, Wiid IJ (2009) Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation. BMC Evol Biol 9:48

    Article  CAS  Google Scholar 

  106. Salisu S, Kenyon C, Kaye PT (2011) Studies towards the synthesis of ATP analogs as potential glutamine synthetase inhibitors. Synthetic Commun 41:2216–2225

    Article  CAS  Google Scholar 

  107. Gxoyiya BSB, Kaye PT, Kenyon C (2010) Benzimidazole-derived ATP analogues as potential glutamine synthetase inhibitors. Synthetic Commun 40:2578–2587

    Article  CAS  Google Scholar 

  108. Louw GE, Warren RM, Gey van Pittius NC, Leon R, Jimenez A, Pando RH, McEvoy CR, Grobbelaar M, Murray M, van Helden PD, Victor TC (2011) Rifampicin reduces susceptibility to ofloxacin in rifampicin resistant mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 184:269–276

    Article  CAS  Google Scholar 

  109. Beukes M, Lemmer Y, Deysel M, Al Dulayymi JR, Baird MS, Koza G, Iglesias MM, Rowles RR, Theunissen C, Grooten J, Toschi G, Roberts VV, Pilcher L, Van Wyngaardt S, Mathebula N, Balogun M, Stoltz AC, Verschoor JA (2010) Structure-function relationships of the antigenicity of mycolic acids in tuberculosis patients. Chem Phys Lipids 163:800–808

    Article  CAS  Google Scholar 

  110. Lemmer Y, Thanyani ST, Vrey PJ, Driver CH, Venter L, van Wyngaardt S, ten Bokum AM, Ozoemena KI, Pilcher LA, Fernig DG, Stoltz AC, Swai HS, Verschoor JA (2009) Chapter 5 – Detection of antimycolic acid antibodies by liposomal biosensors. Methods Enzymol 464:79–104

    Article  CAS  Google Scholar 

  111. Khati M (2010) The future of aptamers in medicine. J Clin Pathol 63:480–487

    Article  CAS  Google Scholar 

  112. Chen F, Zhang X, Zhou J, Liu S, Liu J (2011) Aptamer inhibits Mycobacterium tuberculosis (H37Rv) invasion of macrophage. Mol Biol Rep. doi:doi:10.1007/s11033-011-0963-3

  113. Shum KT, Lui EL, Wong SC, Yeung P, Sam L, Wang Y, Watt RM, Tanner JA (2011) Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry 50:3261–3271

    Article  CAS  Google Scholar 

  114. Chen F, Zhou J, Luo F, Mohammed AB, Zhang XL (2007) Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun 357:743–748

    Article  CAS  Google Scholar 

  115. Qin L, Zheng R, Ma Z, Feng Y, Liu Z, Yang H, Wang J, Jin R, Lu J, Ding Y, Hu Z (2009) The selection and application of ssDNA aptamers against MPT64 protein in Mycobacterium tuberculosis. Clin Chem Lab Med 47:405–411

    Article  CAS  Google Scholar 

  116. Swai H, Semete B, Kalombo L, Chelule P, Kisich K, Sievers B (2009) Nanomedicine for respiratory diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:255–263

    Article  CAS  Google Scholar 

  117. Cholo MC, Boshoff HI, Steel HC, Cockeran R, Matlola NM, Downing KJ, Mizrahi V, Anderson R (2006) Effects of clofazimine on potassium uptake by a Trk-deletion mutant of Mycobacterium tuberculosis. J Antimicrob Chemother 57:79–84

    Article  CAS  Google Scholar 

  118. Castaneda-Garcia A, Do TT, Blazquez J (2011) The K + uptake regulator TrkA controls membrane potential, pH homeostasis and multidrug susceptibility in Mycobacterium smegmatis. J Antimicrob Chemother 66:1489–1498

    Article  CAS  Google Scholar 

  119. Falconer SB, Czarny TL, Brown ED (2011) Antibiotics as probes of biological complexity. Nat Chem Biol 7:415–423

    Article  CAS  Google Scholar 

  120. Aguero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, Campbell RK, Carmona S, Carruthers IM, Chan AW, Chen F, Crowther GJ, Doyle MA, Hertz-Fowler C, Hopkins AL, McAllister G, Nwaka S, Overington JP, Pain A, Paolini GV, Pieper U, Ralph SA, Riechers A, Roos DS, Sali A, Shanmugam D, Suzuki T, Van Voorhis WC, Verlinde CL (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7:900–907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in the MMRU is supported by the DST, the NRF, TIA, the MRC, the National Health Laboratory Service and the University of Cape Town.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Mizrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Warner, D.F., Mizrahi, V. (2012). Tuberculosis Drug Discovery: Target Identification and Validation. In: Chibale, K., Davies-Coleman, M., Masimirembwa, C. (eds) Drug Discovery in Africa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28175-4_3

Download citation

Publish with us

Policies and ethics