Results and Discussion

  • Claudia Backes
Part of the Springer Theses book series (Springer Theses)


In the first section, the suitability of seven different perylene bisimide derivatives (17) with respect to nanotube dispersion and exfoliation in water has been investigated (Scheme 3.1) [1, 2]. The syntheses of these systems is described in the literature [2, 3]. As outlined by numerous studies [4, 5, 6, 7, 8, 9, 10, 11, 12], the inclusion of polycyclic aromatic units in nanotube dispersion additives enhances the interaction with the aromatic nanotube scaffold in comparison to classical detergents where the interaction is limited to van der Waals attraction.
Scheme 3.1

Structures of the perylene bisimide derivatives and the reference systems applied for the dispersion of HiPco SWCNTs. The anchor unit to the SWCNT surface is indicated by the blue squares, the solvophylic moieties by the grey circles


Buffer Aqueous Solution Dispersion Efficiency Sodium Cholate Perylene Derivative SWCNT Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Backes, C.D. Schmidt, F. Hauke, C. Boettcher, A. Hirsch, J. Am. Chem. Soc. 131, 2172–2184 (2009)CrossRefGoogle Scholar
  2. 2.
    C. Backes, C.D. Schmidt, K. Rosenlehner, J.N. Coleman, F. Hauke, A. Hirsch, Adv. Mater. 22, 788–802 (2010)CrossRefGoogle Scholar
  3. 3.
    C.D. Schmidt, C. Bottcher, A. Hirsch, Eur. J. Org. Chem. 5497–5505 (2007)Google Scholar
  4. 4.
    Y. Tomonari, H. Murakami, N. Nakashima, Chem. Eur. J. 12, 4027–4034 (2006)CrossRefGoogle Scholar
  5. 5.
    H. Paloniemi, T. Aeaeritalo, T. Laiho, H. Liuke, N. Kocharova, K. Haapakka, F. Terzi, R. Seeber, J. Lukkari, J. Phys. Chem. B 109, 8634–8642 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Chen, C.P. Collier, J. Phys. Chem. B 109, 7605–7609 (2005)CrossRefGoogle Scholar
  7. 7.
    A. Mateo-Alonso, C. Ehli, K.H. Chen, D.M. Guldi, M. Prato, J. Phys. Chem. A 111, 12669–12673 (2007)CrossRefGoogle Scholar
  8. 8.
    V. Zorbas, A.L. Smith, H. Xie, A. Ortiz-Acevedo, A.B. Dalton, G.R. Dieckmann, R.K. Draper, R.H. Baughman, I.H. Musselman, J. Am. Chem. Soc. 127, 12323–12328 (2005)CrossRefGoogle Scholar
  9. 9.
    S.-Y. Ju, J. Doll, I. Sharma, F. Papadimitrakopoulos, Nat. Nanotechnol. 3, 356–362 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Nish, J.-Y. Hwang, J. Doig, R.J. Nicholas, Nat. Nanotechnol. 2, 640–646 (2007)CrossRefGoogle Scholar
  11. 11.
    F. Chen, B. Wang, Y. Chen, L.-J. Li, Nano Lett. 7, 3013–3017 (2007)CrossRefGoogle Scholar
  12. 12.
    J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen, R.J. Nicholas, J. Am. Chem. Soc. 130, 3543–3553 (2008)CrossRefGoogle Scholar
  13. 13.
    O. Matarredona, H. Rhoads, Z. Li, J.H. Harwell, L. Balzano, D.E. Resasco, J. Phys. Chem. B 107, 13357–13367 (2003)CrossRefGoogle Scholar
  14. 14.
    Y. Tan, D.E. Resasco, J. Phys. Chem. B 109, 14454–14460 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Utsumi, M. Kanamaru, H. Honda, H. Kanoh, H. Tanaka, T. Ohkubo, H. Sakai, M. Abe, K. Kaneko, J. Colloid Interface Sci. 308, 276–284 (2007)CrossRefGoogle Scholar
  16. 16.
    M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, Nano Lett. 3, 269–273 (2003)CrossRefGoogle Scholar
  17. 17.
    W. Wenseleers, I.I. Vlasov, E. Goovaerts, E.D. Obraztsova, A.S. Lobach, A. Bouwen, Adv. Funct. Mater. 14, 1105–1112 (2004)CrossRefGoogle Scholar
  18. 18.
    B.R. Priya, H.J. Byrne, J. Phys. Chem. C 112, 332–337 (2008)CrossRefGoogle Scholar
  19. 19.
    T. Okazaki, T. Saito, K. Matsuura, S. Ohshima, M. Yumura, S. Iijima, Nano Lett. 5, 2618–2623 (2005)CrossRefGoogle Scholar
  20. 20.
    T.J. McDonald, C. Engtrakul, M. Jones, G. Rumbles, M.J. Heben, J. Phys. Chem. B 110, 25339–25346 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Brettreich, Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg (Germany) 44ff, 2000Google Scholar
  22. 22.
    B. Zhao, M.E. Itkis, S. Niyogi, H. Hu, J. Zhang, R.C. Haddon, J. Phys. Chem. B 108, 8136–8141 (2004)CrossRefGoogle Scholar
  23. 23.
    H. Cathcart, S. Quinn, V. Nicolosi, J.M. Kelly, W.J. Blau, J.N. Coleman, J. Phys. Chem. C 111, 66–74 (2007)CrossRefGoogle Scholar
  24. 24.
    M.S. Arnold, M.O. Guler, M.C. Hersam, S.I. Stupp, Langmuir 21, 4705–4709 (2005)CrossRefGoogle Scholar
  25. 25.
    A.D.Q. Li, W. Wang, L.-Q. Wang, Chem. Eur. J. 9, 4594–4601 (2003)CrossRefGoogle Scholar
  26. 26.
    W.E. Ford, J. Photochem. 37, 189–204 (1987)CrossRefGoogle Scholar
  27. 27.
    W. Wang, J.J. Han, L.-Q. Wang, L.-S. Li, W.J. Shaw, A.D.Q. Li, Nano Lett. 3, 455–458 (2003)CrossRefGoogle Scholar
  28. 28.
    C. Ehli, C. Oelsner, D.M. Guldi, A. Mateo-Alonso, M. Prato, C.D. Schmidt, C. Backes, F. Hauke, A. Hirsch, Nat. Chem. (2009). doi: 10.1038/NCHEM.214 Google Scholar
  29. 29.
    S.D. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Sun, W.J. Blau, J.N. Coleman, J. Phys. Chem. C 112, 972–977 (2008)CrossRefGoogle Scholar
  30. 30.
    M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science 297, 593–596 (2002)CrossRefGoogle Scholar
  31. 31.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361–2366 (2002)CrossRefGoogle Scholar
  32. 32.
    H. Cathcart, V. Nicolosi, J.M. Hughes, W.J. Blau, J.M. Kelly, S.J. Quinn, J.N. Coleman, J. Am. Chem. Soc. 130, 12734–12744 (2008)CrossRefGoogle Scholar
  33. 33.
    J.J. Brege, C. Gallaway, A.R. Barron, J. Phys. Chem. C 111, 17812–17820 (2007)CrossRefGoogle Scholar
  34. 34.
    R. Marquis, C. Greco, I. Sadokierska, S. Lebedkin, M.M. Kappes, T. Michel, L. Alvarez, J.-L. Sauvajol, S. Meunier, C. Mioskowski, Nano Lett. 8, 1830–1835 (2008)CrossRefGoogle Scholar
  35. 35.
    V. Nicolosi, H. Cathcart, A.R. Dalton, D. Aherne, G.R. Dieckmann, J.N. Coleman, Biomacromolecules 9, 598–602 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Giordani, S.D. Bergin, V. Nicolosi, S. Lebedkin, M.M. Kappes, W.J. Blau, J.N. Coleman, J. Phys. Chem. B 110, 15708–15718 (2006)CrossRefGoogle Scholar
  37. 37.
    B. White, S. Banerjee, S. O’Brien, N.J. Turro, I.P. Herman, J. Phys. Chem. C 111, 13684–13690 (2007)CrossRefGoogle Scholar
  38. 38.
    Z. Sun, V. Nicolosi, D. Rickard, S.D. Bergin, D. Aherne, J.N. Coleman, J. Phys. Chem. C 112, 10692–10699 (2008)CrossRefGoogle Scholar
  39. 39.
    D.C.H. Cheng, E. Gulari, J. Colloid Interface Sci. 90, 410–423 (1982)CrossRefGoogle Scholar
  40. 40.
    J.F. Cardenas, A. Gromov, Nanotechnology 20, 465703/465701–465703/465708 (2009)CrossRefGoogle Scholar
  41. 41.
    L.S. Witus, J.-D.R. Rocha, V.M. Yuwono, S.E. Paramonov, R.B. Weisman, J.D. Hartgerink, J. Mater. Chem. 17, 1909–1915 (2007)CrossRefGoogle Scholar
  42. 42.
    V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, J. Schmidt, Y. Talmon, Nano Lett. 3, 1379–1382 (2003)CrossRefGoogle Scholar
  43. 43.
    N. Grossiord, O. Regev, J. Loos, J. Meuldijk, C.E. Koning, Anal. Chem. 77, 5135–5139 (2005)CrossRefGoogle Scholar
  44. 44.
    Y. Dror, W. Pyckhout-Hintzen, Y. Cohen, Macromolecules 38, 7828–7836 (2005)CrossRefGoogle Scholar
  45. 45.
    R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Lett. 2, 25–28 (2002)CrossRefGoogle Scholar
  46. 46.
    M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, J. Nanosci. Nanotechnol. 3, 81–86 (2003)CrossRefGoogle Scholar
  47. 47.
    D.A. Tsyboulski, E.L. Bakota, L.S. Witus, J.-D.R. Rocha, J.D. Hartgerink, R.B. Weisman, J. Am. Chem. Soc. 130, 17134–17140 (2008)CrossRefGoogle Scholar
  48. 48.
    S.-Y. Ju, W.P. Kopcha, F. Papadimitrakopoulos, Science 323, 1319–1323 (2009)CrossRefGoogle Scholar
  49. 49.
    R. Garcia, J. Tamayo, A. San Paulo, Surf. Interface Anal. 27, 312–316 (1999)CrossRefGoogle Scholar
  50. 50.
    J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Appl. Phys. Lett. 72, 2613–2615 (1998)CrossRefGoogle Scholar
  51. 51.
    O.P. Behrend, L. Odoni, J.L. Loubet, N.A. Burnham, Appl. Phys. Lett. 75, 2551–2553 (1999)CrossRefGoogle Scholar
  52. 52.
    G. Bar, Y. Thomann, M.H. Whangbo, Langmuir 14, 1219–1226 (1998)CrossRefGoogle Scholar
  53. 53.
    S.N. Magonov, V. Elings, V.S. Papkov, Polymer 38, 297–307 (1997)CrossRefGoogle Scholar
  54. 54.
    R. Garcia, R. Perez, Surf. Sci. Rep. 47, 197–301 (2002)CrossRefGoogle Scholar
  55. 55.
    B. Gigliotti, B. Sakizzie, D.S. Bethune, R.M. Shelby, J.N. Cha, Nano Lett. 6, 159–164 (2006)CrossRefGoogle Scholar
  56. 56.
    M. Zheng, A. Jagota, M.S. Strano, A.P. Santos, P. Barone, S.G. Chou, B.A. Diner, M.S. Dresselhaus, R.S. McLean, G.B. Onoa, G.G. Samsonidze, E.D. Semke, M. Usrey, D.J. Walls, Science 302, 1545–1548 (2003)CrossRefGoogle Scholar
  57. 57.
    P.P.T.I.T. Okpalugo, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon 2005, 43, 153–161Google Scholar
  58. 58.
    R. Graupner, J. Abraham, D. Wunderlich, A. Vencelova, P. Lauffer, J. Roehrl, M. Hundhausen, L. Ley, A. Hirsch, J. Am. Chem. Soc. 128, 6683–6689 (2006)CrossRefGoogle Scholar
  59. 59.
    Z. Syrgiannis, F. Hauke, J.R. Hundhausen, R. Graupner, Y. Elemes, A. Hirsch, Eur. J. Org. Chem. 2008, 2544–2550Google Scholar
  60. 60.
    J. Tarabek, L. Kavan, L. Dunsch, M. Kalbac, J. Phys. Chem. C 112, 13856–13861 (2008)CrossRefGoogle Scholar
  61. 61.
    S. Hüfner, Photoelectron Spectroscopy (Springer, Berlin, 1995)Google Scholar
  62. 62.
    R. Graupner, J. Abraham, A. Vencelova, T. Seyller, F. Hennrich, M.M. Kappes, A. Hirsch, L. Ley, Phys. Chem. Chem. Phys. 5, 5472–5476 (2003)CrossRefGoogle Scholar
  63. 63.
    A. Krüger, Neue Kohlenstoffmaterialien (Teubner, Wiesbaden, 2007)Google Scholar
  64. 64.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996)Google Scholar
  65. 65.
    P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33, 959–972 (1995)CrossRefGoogle Scholar
  66. 66.
    U.J. Kim, X.M. Liu, C.A. Furtado, G. Chen, R. Saito, J. Jiang, M.S. Dresselhaus, P.C. Eklund, Phys. Rev. Lett. 95, 157402/157401–157402/157404 (2005)Google Scholar
  67. 67.
    C. Branca, F. Frusteri, V. Magazu, A. Mangione, J. Phys. Chem. B 108, 3469–3473 (2004)CrossRefGoogle Scholar
  68. 68.
    U. Kuhlmann, H. Jantoljak, N. Pfander, P. Bernier, C. Journet, C. Thomsen, Chem. Phys. Lett. 294, 237–240 (1998)CrossRefGoogle Scholar
  69. 69.
    U. Kuhlmann, H. Jantoljak, N. Pfander, C. Journet, P. Bernier, C. Thomsen, Synth. Met. 103, 2506–2507 (1999)CrossRefGoogle Scholar
  70. 70.
    K. Rosenlehner, B. Schade, C. Boettcher, C.M. Jaeger, T. Clark, F.W. Heinemann, A. Hirsch, Chem. Eur. J. 16, 9544–9554 (2010)CrossRefGoogle Scholar
  71. 71.
    C. Backes, T. Schunk, F. Hauke, A. Hirsch, J. Mater. Chem. 21, 3554–3557 (2011)CrossRefGoogle Scholar
  72. 72.
    J.-H. Lee, S.-M. Yoon, K.K. Kim, I.-S. Cha, Y.J. Park, J.-Y. Choi, Y.H. Lee, U. Paik, J. Phys. Chem. C 112, 15267–15273 (2008)CrossRefGoogle Scholar
  73. 73.
    Y. Fujita, S. Bandow, S. Iijima, Chem. Phys. Lett. 413, 410–414 (2005)CrossRefGoogle Scholar
  74. 74.
    E. Karabudak, C. Backes, F. Hauke, C.D. Schmidt, H. Cölfen, A. Hirsch, W. Wohlleben, Chem. Phys. Chem. 11, 3224–3227 (2010)CrossRefGoogle Scholar
  75. 75.
    N. Nair, W.-J. Kim, R.D. Braatz, M.S. Strano, Langmuir 24, 1790–1795 (2008)CrossRefGoogle Scholar
  76. 76.
    M.S. Arnold, J. Suntivich, S.I. Stupp, M.C. Hersam, ACS Nano 2, 2291–2300 (2008)CrossRefGoogle Scholar
  77. 77.
    W. Maechtle, L. Boerger, Analytical Ultracentrifugation of Polymers and Nanoparticles (Springer, Berlin, 2006)Google Scholar
  78. 78.
    H. Coelfen, Anal. Ultracentrifugation 2005, 501–583Google Scholar
  79. 79.
    W. Maechtle, Makromol. Chem. 185, 1025–1039 (1984)CrossRefGoogle Scholar
  80. 80.
    H.G. Mueller, F. Herrmann, Prog. Colloid Polym. Sci. 99, 114–119 (1995)CrossRefGoogle Scholar
  81. 81.
    P.H. Brown, P. Schuck, Comput. Phys. Commun. 178, 105–120 (2008)CrossRefGoogle Scholar
  82. 82.
    C. Backes, E. Karabudak, C.D. Schmidt, F. Hauke, A. Hirsch, W. Wohlleben, Chem. Eur. J. 16, 13176–13184 (2010)CrossRefGoogle Scholar
  83. 83.
    P. Schuck, in SEDFIT, version 10.09b (Ed.: N. I. o. Health), 2007Google Scholar
  84. 84.
    P. Schuck, Biophys. J. 78, 1606–1619 (2000)CrossRefGoogle Scholar
  85. 85.
    N.R. Tummala, A. Striolo, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80, 021408/021401–021408/021410 (2009)CrossRefGoogle Scholar
  86. 86.
    E.E. Lees, M.J. Gunzburg, T.-L. Nguyen, G.J. Howlett, J. Rothacker, E.C. Nice, A.H.A. Clayton, P. Mulvaney, Nano Lett. 8, 2883–2890 (2008)CrossRefGoogle Scholar
  87. 87.
    N. Nakashima, Y. Tomonari, H. Murakami, Chem. Lett. 2002, 638–639Google Scholar
  88. 88.
    J. Zhao, J.P. Lu, J. Han, C.-K. Yang, Appl. Phys. Lett. 82, 3746–3748 (2003)CrossRefGoogle Scholar
  89. 89.
    C. Ehli, C. Oelsner, D.M. Guldi, A. Mateo-Alonso, M. Prato, C. Schmidt, C. Backes, F. Hauke, A. Hirsch, Nat. Chem. 1, 243–249 (2009)CrossRefGoogle Scholar
  90. 90.
    M.J. O’Connell, E.E. Eibergen, S.K. Doorn, Nat. Mater. 4, 412–418 (2005)CrossRefGoogle Scholar
  91. 91.
    C. Backes, C.D. Schmidt, J.N. Coleman, W. Wohlleben, F. Hauke, A. Hirsch, Chem. Eur. J. 16, 13185–13192 (2010)CrossRefGoogle Scholar
  92. 92.
    N.V. Kozhemyakina, J.M. Englert, G. Yang, E. Spiecker, C.D. Schmidt, F. Hauke, A. Hirsch, Adv. Mater. 5483–5487 (2010)Google Scholar
  93. 93.
    P.C. Schulz, M.A. Morini, R.M. Minardi, J.E. Puig, Colloid Polym. Sci. 273, 959–966 (1995)CrossRefGoogle Scholar
  94. 94.
    S.K. Hait, P.R. Majhi, A. Blume, S.P. Moulik, J. Phys. Chem. B 107, 3650–3658 (2003)CrossRefGoogle Scholar
  95. 95.
    M.L. Corrin, W.D. Harkins, J. Chem. Phys. 14, 641 (1946)CrossRefGoogle Scholar
  96. 96.
    C. Backes, U. Mundloch, A. Ebel, F. Hauke, A. Hirsch, Chem. Eur. J. 16, 3314–3317 (2010)CrossRefGoogle Scholar
  97. 97.
    A. Ebel, W. Donaubauer, F. Hampel, A. Hirsch, Eur. J. Org. Chem. 3488–3494 (2007)Google Scholar
  98. 98.
    C. Backes, A. Hirsch, in Chemistry of Nanocarbons, 2010 eds. by T. Akasaka, F. Wudl, S. Nagase, Wiley, p. 528Google Scholar
  99. 99.
    M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol. 1, 60–65 (2006)CrossRefGoogle Scholar
  100. 100.
    C.W. Lee, C.-H. Weng, L. Wei, Y. Chen, M.B. Chan-Park, C.-H. Tsai, K.-C. Leou, C.H.P. Poa, J. Wang, L.-J. Li, J. Phys. Chem. C 112, 12089–12091 (2008)CrossRefGoogle Scholar
  101. 101.
    A.A. Green, M.C. Hersam, Nano Lett. 8, 1417–1422 (2008)CrossRefGoogle Scholar
  102. 102.
    Y. Sato, K. Yanagi, Y. Miyata, K. Suenaga, H. Kataura, S. Iijima, Nano Lett. 8, 3151–3154 (2008)CrossRefGoogle Scholar
  103. 103.
    Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 13187–13191 (2008)CrossRefGoogle Scholar
  104. 104.
    Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, Phys. Stat. Sol. (b) 245, 2233–2238 (2008)CrossRefGoogle Scholar
  105. 105.
    Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 3591–3596 (2008)CrossRefGoogle Scholar
  106. 106.
    S. Ghosh, S.M. Bachilo, R.B. Weisman, Nat. Nanotechnol. 5, 443–450 (2010)CrossRefGoogle Scholar
  107. 107.
    W.-J. Kim, N. Nair, C.Y. Lee, M.S. Strano, J. Phys. Chem. C 112, 7326–7331 (2008)CrossRefGoogle Scholar
  108. 108.
    B. Gebhardt, F. Hof, C. Backes, M. Müller, T. Plocke, C. Thomsen, F. Hauke, A. Hirsch, J. Am. Chem. Soc. (2011). doi:  10.1021/ja206818n
  109. 109.
    Z. Syrgiannis, B. Gebhardt, C. Dotzer, F. Hauke, R. Graupner, A. Hirsch, Angew. Chem. Int. Ed. 49, 3322–3325, S3322/3321–S3322/3329 (2010)Google Scholar
  110. 110.
    D.M. Guldi, N. Martín, Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. Wiley-VCH 2010Google Scholar
  111. 111.
    C. Backes, C.D. Schmidt, F. Hauke, A. Hirsch, Chem. Commun. 19, 2643–2645 (2009)CrossRefGoogle Scholar
  112. 112.
    M.C. Hersam, Nat. Nanotechnol. 3, 387–394 (2008)CrossRefGoogle Scholar
  113. 113.
    J.A. Fagan, M.L. Becker, J. Chun, E.K. Hobbie, Adv. Mater. 20, 1609–1613 (2008)CrossRefGoogle Scholar
  114. 114.
    J.A. Fagan, M.L. Becker, J. Chun, P. Nie, B.J. Bauer, J.R. Simpson, A. Hight-Walker, E.K. Hobbie, Langmuir 24, 13880–13889 (2008)CrossRefGoogle Scholar
  115. 115.
    J.A. Fagan, J.R. Simpson, B.J. Bauer, S.H. De Paoli Lacerda, M.L. Becker, J. Chun, K.B. Migler, A.R. Hight Walker, E.K. Hobbie, J. Am. Chem. Soc. 129, 10607–10612 (2007)CrossRefGoogle Scholar
  116. 116.
    C. Backes, C.D. Schmidt, F. Hauke, A. Hirsch, Chem. Asian J. 6, 438–444 (2011)CrossRefGoogle Scholar
  117. 117.
    C. Backes, J. Englert, N. Bernhard, F. Hauke, A. Hirsch, Small 6, 1968–1973 (2010)CrossRefGoogle Scholar
  118. 118.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)CrossRefGoogle Scholar
  119. 119.
    D.S.L. Abergel, A. Russell, V.I. Fal’ko, Appl. Phys. Lett. 91, 063125 (2007)CrossRefGoogle Scholar
  120. 120.
    X. Wang, M. Zhao, D.D. Nolte, Appl. Phys. Lett. 95, 081102 (2009)CrossRefGoogle Scholar
  121. 121.
    P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Appl. Phys. Lett. 91, 063124/063121–063124/063123 (2007)Google Scholar
  122. 122.
    R. Graupner, J. Raman Spectrosc. 38, 673–683 (2007)CrossRefGoogle Scholar
  123. 123.
    M.J.O’Connell, S. Sivaram, S.K. Doorn, Phys. Rev. B. 69, 235415/235411–235415/235415 (2004)Google Scholar
  124. 124.
    A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund, R.C. Haddon, U.D. Venkateswaran, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 86, 3895–3898 (2001)CrossRefGoogle Scholar
  125. 125.
    D.A. Heller, P.W. Barone, J.P. Swanson, R.M. Mayrhofer, M.S. Strano, J. Phys. Chem. B 108, 6905–6909 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.ZMP-Institute of Advanced Materials and ProcessesUniversität Erlangen-NürnbergFürthGermany

Personalised recommendations