Skip to main content

Efficient Multi-resolution Plane Segmentation of 3D Point Clouds

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7102))

Included in the following conference series:

Abstract

We present an efficient multi-resolution approach to segment a 3D point cloud into planar components. In order to gain efficiency, we process large point clouds iteratively from coarse to fine 3D resolutions: At each resolution, we rapidly extract surface normals to describe surface elements (surfels). We group surfels that cannot be associated with planes from coarser resolutions into co-planar clusters with the Hough transform. We then extract connected components on these clusters and determine a best plane fit through RANSAC. Finally, we merge plane segments and refine the segmentation on the finest resolution. In experiments, we demonstrate the efficiency and quality of our method and compare it to other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. of the ACM (1981)

    Google Scholar 

  2. Fitzgibbon, A.W., Eggert, D.W., Fisher, R.B.: High-level model acquisition from range images. Computer-Aided Design 29(4), 321–330 (1997)

    Article  Google Scholar 

  3. Gotardo, P., Bellon, O., Silva, L.: Range image segmentation by surface extraction using an improved robust estimator. In: Proc. of the Int. Conf. on Computer Vision and Pattern Recognition, CVPR (2003)

    Google Scholar 

  4. Harati, A., Gächter, S., Siegwart, R.: Fast range image segmentation for indoor 3D-SLAM. In: 6th IFAC Symposium on Intelligent Autonomous Vehicles (2007)

    Google Scholar 

  5. Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D.B., Bowyer, K., Eggert, D.W., Fitzgibbon, A., Fisher, R.B.: An experimental comparison of range image segmentation algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(7), 673–689 (1996)

    Article  Google Scholar 

  6. Hough, P.: Method and means for recognizing complex patterns. U.S. Patent 3.069.654 (1962)

    Google Scholar 

  7. Jiang, X., Bunke, H.: Fast segmentation of range images into planar regions by scan line grouping. Machine Vision Applications 7, 115–122 (1994)

    Article  Google Scholar 

  8. Rabbani, T.: Automatic reconstruction of industrial installations using point clouds and images. Ph.D. thesis, TU Delft (2006)

    Google Scholar 

  9. Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (PCL). In: Proc. of the Int. Conf. on Robotics and Automation (ICRA), Shanghai, China (2011)

    Google Scholar 

  10. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. Computer Graphics Forum 26(2), 214–226 (2007)

    Article  Google Scholar 

  11. Taylor, R.W., Savini, M., Reeves, A.P.: Fast segmentation of range imagery into planar regions. Computer Vision, Graphics, and Image Processing 45(1), 42–60 (1989)

    Article  Google Scholar 

  12. Vosselman, G., Gorte, B.G.H., Sithole, G., Rabbani, T.: Recognising structure in laser scanner point clouds. In: ISPRS - Laser-Scanners for Forest and Landscape Assessment (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oehler, B., Stueckler, J., Welle, J., Schulz, D., Behnke, S. (2011). Efficient Multi-resolution Plane Segmentation of 3D Point Clouds. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25489-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25489-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25488-8

  • Online ISBN: 978-3-642-25489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics