Advertisement

Zusammenfassung

Der Aspekt Ausdauer ist aus sportwissenschaftlicher und onkologischer Perspektive die Form motorischer Beanspruchung, deren Erforschung in den letzten Jahren große Fortschritte gemacht hat (Baumann u. Schüle 2008). Das Ausdauertraining ist ein fundamentaler Baustein des körperlichen Trainings und hat während der letzten Jahre einen wichtigen Stellenwert in der (Früh-)Rehabilitation onkologischer Patienten erhalten. Ausdauertraining ist effektiv und umsetzbar, und die Belastungskontrolle kann bei onkologischen Patienten genau gesteuert werden (ebd.). In Übersichtsarbeiten wurde in den letzten Jahren mehrfach dokumentiert, dass Ausdauertraining eine effektive Methode ist, um die aerobe Kapazität bei Patienten mit onkologischen Erkrankungen zu verbessern (McNeely et al. 2006; Wiskemann u. Huber 2008; Lowe et al. 2010; Speck et al. 2010; Granger et al. 2011; Keogh u. Macleod 2011). Dies ist für die Patienten von Bedeutung, weil eine Zunahme der aeroben Kapazität mit einer Abnahme des berüchtigten Fatigue -Syndroms assoziiert ist, aber auch mit einer Zunahme der Lebensqualität während und nach der onkologischen Therapie (Speck et al. 2010). Die Effektivität des Ausdauertrainings bei onkologischen Patienten wird jedoch durch mehrere Faktoren beeinflusst, z.B. den Zeitpunkt der Durchführung des Ausdauertrainings (während oder nach der onkologischen Therapie), das Krankheitsstadium der Krebserkrankung, die Art und den Schweregrad der onkologischen Behandlung oder den Lebensstil des Patienten (Knols et al. 2005).

Literatur

  1. Arbane G, Tropman D, Jackson D et al. (2011) Evaluation of an early exercise intervention after thoracotomy for non-small cell lung cancer (NSCLC), effects on quality of life, muscle strength and exercise tolerance: randomised controlled trial. Lung Cancer 71:229–234Google Scholar
  2. Baumann FT, Schüle K (2008) Bewegungstherapie und Sport bei Krebs; Leitfaden für die Praxis. Deutscher Ärzte Verlag GmbH, Köln, S 33–55Google Scholar
  3. Baumann FT, Kraut L, Schüle K et al. (2010) A controlled randomized study examining the effects of exercise therapy on patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant 45:355–362Google Scholar
  4. CEBM: Centre for evidenced based medicine. http://www.cebm.net/index.aspx?o = 1025 (15 April 2011)Google Scholar
  5. Courneya KS, Mackey JR, Bell GJ et al. (2003) Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: cardiopulmonary and quality of life outcomes. J Clin Oncol 21:1660–1668Google Scholar
  6. Courneya KS, Friedenreich CM, Quinney HA et al. (2003) A randomized trial of exercise and quality of life in colorectal cancer survivors. Eur J Cancer Care 12:347–357Google Scholar
  7. Courneya KS, Segal RJ, Mackey JR et al. (2007) Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol 25:4396–4404Google Scholar
  8. Courneya KS, Jones LW, Peddle CJ et al. (2008) Effects of aerobic exercise training in anemic cancer patients receiving darbepoetin alfa: a randomized controlled trial. Oncologist 13:1012–1020Google Scholar
  9. Courneya KS, Sellar CM, Stevinson C et al. (2009) Randomized controlled trial of the effects of aerobic exercise on physical functioning and quality of life in lymphoma patients. J Clin Oncol 20:4605–4612Google Scholar
  10. Crevenna R, Zielinski C, Keilani MY et al. (2003) Aerobic endurance training for cancer patients. Wien Med Wochenschr 153:212–216Google Scholar
  11. Culos-Reed SN, Robinson JW, Lau H, Stephenson L et al. (2010) Physical activity for men receiving androgen deprivation therapy for prostate cancer: benefits from a 16-week intervention. Support Care Cancer 18:591–599Google Scholar
  12. Daley AJ, Crank H, Saxton JM et al. (2007) Randomized trial of exercise therapy in women treated for breast cancer. J Clin Oncol 25:1713–1721Google Scholar
  13. Dimeo FC, Thomas F, Raabe-Menssen C et al. (2004) Effect of aerobic exercise and relaxation training on fatigue and physical performance of cancer patients after surgery. A randomised controlled trial. Support Care Cancer 12:774–779Google Scholar
  14. Galvao DA, Taaffee DR, Spry N et al. (2010) Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. Journal of clinical oncology 28:340–347Google Scholar
  15. Granger CL, McDonald CF, Berney S et al. (2011) Exercise intervention to improve exercise capacity and health related quality of life for patients with non-small cell lung cancer: a systematic review. Lung Cancer 72:139–153Google Scholar
  16. Hayes SC, Spence R, Galvao D, Newton R (2009) Australian Association for Exercise and Sport Science position stand: Optimising cancer outcomes through exercise. Journal of Science and Medicine in Sport 12:428–434Google Scholar
  17. Headley JA, Ownby KK, John LD. (2004) The effect of seated exercise on fatigue and quality of life in women with advanced breast cancer. Oncol Nurs Forum 31:977–983Google Scholar
  18. Jarden M, Baadsgaard MT, Hovgaard DJ et al. (2009) A randomized trial on the effect of a multimodal intervention on physical capacity, functional performance and quality of life in adult patients undergoing allogeneic SCT. Bone Marrow Transplant 43:725–737Google Scholar
  19. Jones LW, Liang Y, Pituskin EN et al. (2011) Effect of exercise training on peak oxygen consumption in patients with cancer: a meta-analysis. Oncologist 16:112–120Google Scholar
  20. Keogh JW, Macleod RD (2011) Body composition, physical fitness, functional performance, quality of life, and fatigue benefits of exercise for prostate cancer patients: A systematic review. J Pain Symptom Manage, June 1 [Epub ahead of print]Google Scholar
  21. Knols R (2010) Medizinische Trainingstherapie bei Krebspatienten. Physioactive 4:13–19Google Scholar
  22. Knols R, Aaronson NK, Uebelhart D et al. (2005) Physical exercise in cancer patients during and after medical treatment: a systematic review of randomized and controlled clinical trials. J Clin Oncol 23:3830–3842Google Scholar
  23. Knols RH, de Bruin ED, Uebelhart D et al. (2011) Effects of an outpatient physical exercise program on hematopoietic stem-cell transplantation recipients: a randomized clinical trial. Bone Marrow Transplant 46:1245–1255Google Scholar
  24. Lowe SS, Watanabe SM, Baracos VE et al. (2010) Physical activity interests and preferences in palliative cancer patients. Support Care Cancer 18:1469–1475Google Scholar
  25. McNeely ML, Campbell KL, Rowe BH et al. (2006) Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ 175:34–41Google Scholar
  26. Milne HM, Wallman KE, Gordon S et al. (2008) Effects of a combined aerobic and resistance exercise program in breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat 108:279–288Google Scholar
  27. Mittlböck M, Heinzl H (2006) Quantifying heterogeneity in a meta-analysis. Stat Med 25:4321–4333Google Scholar
  28. Rogers LQ, Hopkins-Price P, Vicari S et al. (2009) A randomized trial to increase physical activity in breast cancer survivors. Med Sci Sports Exerc 41:935–946Google Scholar
  29. Schneider C, Dennehy C, Carter S (2003) Exercise and cancer recovery. Human Kinetics Publishers, Leeds, United Kingdom, pp 11–42Google Scholar
  30. Segal R, Evans W, Johnson D et al. (2001) Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. Structured exercise improves physical functioning in women with stages I and II breast cancer: Results of a randomized controlled trial. J Clin Oncol 19:657–665Google Scholar
  31. Segal RJ, Reid RD, Courneya KS et al. (2009) Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol 27:344–351Google Scholar
  32. Speck RM, Courneya KS, Mâsse LC et al. (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv 4:87–100Google Scholar
  33. Thorsen L, Skovlund E, Strømme SB et al. (2005) Effectiveness of physical activity on cardiorespiratory fitness and health-related quality of life in young and middle-aged cancer patients shortly after chemotherapy. J Clin Oncol 23:2378–2388Google Scholar
  34. Verhagen AP, de Vet HC, de Bie RA et al. (1998) The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 51:1235–1241Google Scholar
  35. Windsor PM, Nicol KF, Potter J (2004) A randomized, controlled trial of aerobic exercise for treatment-related fatigue in men receiving radical external beam radiotherapy for localized prostate carcinoma. Cancer 101:550–557Google Scholar
  36. Wiskemann J, Huber G (2008) Physical exercise as adjuvant therapy for patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 41:321–329Google Scholar
  37. Wiskemann J, Dreger P, Schwerdtfeger R et al. (2011) Effects of a partly self-administered exercise program before, during, and after allogeneic stem cell transplantation. Blood 117:2604–2613Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ruud Knols
    • 1
  1. 1.Rheumaklinik und Institut für Physikalische MedizinUniversitätsSpital ZürichZürichSchweiz

Personalised recommendations