Advertisement

Dynamic Optimization with Type Indeterminate Decision-Maker: A Theory of Multiple-self Management

  • Ariane Lambert-Mogiliansky
  • Jerome Busemeyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7052)

Abstract

We study the implications of quantum type indeterminacy for a single agent’s dynamic decision problem. When the agent is aware that his decision today affects the preferences that will be relevant for his decisions tomorow, the dynamic optimization problem translates into a game with multiple selves and provides a suitable framework to address issues of self-control.. The TI-model delivers a theory of self-management in terms of decentralized Bayes-Nash equilibrium among the potential eigentypes(selves). In a numerical example we show how the predictions of the TI-model differ from that of a classical model. In the TI-model choices immediately (without additional structure) reflect self-management concerns. In particular, what may be perceived as a feature of dynamic inconsistency, may instead reflect rational optimization by a type indeterminate agent.

Keywords

Risky Asset Dynamic Optimization Decision Situation Social Choice Theory Dynamic Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barkan, R., Busemeyer, J.R.: Modeling dynamic inconsistency with a changing reference point. Journal of Behavioral Decision Making 16, 235–255 (2003)CrossRefGoogle Scholar
  2. 2.
    Benabou, R., Tirole, J.: Identity, Morals and Taboos: Beliefs as Assets. Quaterly Journal of Economics (2011) (forthcoming)Google Scholar
  3. 3.
    Busemeyer, J.R., Weg, E., Barkan, R., Li, X., Ma, Z.: Dynamic and consequential consistency of choices between paths of decision trees. Journal of Experimental Psychology: General 129, 530–545 (2000)CrossRefGoogle Scholar
  4. 4.
    Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum Dynamics of Human Decision-Making. Journal of Mathematical Psychology 50, 220–241 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Busemeyer, J.R.: Quantum Information Processing Explanation for Interaction between Inferences and Decisions. In: Proceedings of the Quantum Interaction Symposium AAAI Press, Menlo Park (2007)Google Scholar
  6. 6.
    Busemeyer, J.R., Santuy, E., Lambert-Mogiliansky, A.: Distinguishing quantum and markov models of human decision making. In: Proceedings of the the Second Interaction Symposium, QI 2008, pp. 68–75 (2008a)Google Scholar
  7. 7.
    Busemeyer, J.R., Lambert-Mogiliansky, A.: An Exploration of Type Indeterminacy in Strategic Decision-Making. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS(LNAI), vol. 5494, pp. 113–128. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Cubitt, R.P., Starmer, C., Sugden, R.: Dynamic choice and the common ratio effect: An experimental invesigation. Economic Journal 108, 1362–1380 (1998)CrossRefGoogle Scholar
  9. 9.
    Danilov, V.I., Lambert-Mogiliansky, A.: Measurable Systems and Behavioral Sciences. Mathematical Social Sciences 55, 315–340 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Danilov, V.I., Lambert-Mogiliansky, A.: Decision-making under non-classical uncertainty. In: Proceedings of the the Second Interaction Symposium (QI 2008), pp. 83–87 (2008)Google Scholar
  11. 11.
    Danilov, V.I., Lambert-Mogiliansky, A.: Expected Utility under Non-classical Uncertainty. Theory and Decision 2010/68, 25–47 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Deutsch, D.: Quantum Theory of Propability and Decisions. Proc. R. Soc. Lond. A 455, 3129–3137 (1999)Google Scholar
  13. 13.
    Franco, R.: The conjunction Fallacy and Interference Effects (2007), arXiv:0708.3948v1 Google Scholar
  14. 14.
    Franco, R.: The inverse fallacy and quantum formalism. In: Proceedings of the Second Quantum Interaction International Symposium (QI 2008), pp. 94–98 (2008)Google Scholar
  15. 15.
    Fudenberg, Levine: A Dual Self Model of Impulse Control. American Economic Review 96, 1449–1476 (2006)CrossRefGoogle Scholar
  16. 16.
    Fudenberg, Levine.: Timing and Self-Control working paper (2010)Google Scholar
  17. 17.
    Gul, F., Pesendorfer, W.: Temptation and Self Control. Econometrica 69, 1403–1436 (2001)Google Scholar
  18. 18.
    Gul, F., Pesendorfer, W.: Self Control and the Theory of Consumption. Econometrica 72, 110–158 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gul, F., Pesendorfer, W.: Self Control, Revealed Preference and Consumption Choice. Review of Economic Studies (2005)Google Scholar
  20. 20.
    Hey, J.D., Knoll, J.A.: How far ahead do people plan? Economic Letters 96, 8–13 (2007)CrossRefGoogle Scholar
  21. 21.
    Khrennikov, A.: Ubiquitous Quantum Structure - From Psychology to Finance. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kirsteiger, G., Rigotti, L., Rustichini, A.: Your Morals Might be Your Moods. Journal of Economic Behavior and Organization 59/2, 155–172 (2006)CrossRefGoogle Scholar
  23. 23.
    Lambert-Mogiliansky, A., Zamir, S., Zwirn, H.: Type indeterminacy - A Model of the KT(Khaneman Tversky)- man. Journal of Mathematical Psychology 53/5, 349–361 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lambert-Mogiliansky, A.: Endogenous preferences in games with Type-Indeterminate Players, FS 10-08, pp. 70–77. AAAI Press, Menlo Park (2010)Google Scholar
  25. 25.
    La Mura, P.: Correlated Equilibria of Classical strategies with Quantum Signals. International Journal Of Quantum Information 3, 183–188 (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    La Mura, P.: Prospective Expected Utility. In: Proceedings of the the Second Quantum Interaction International Symposium (QI 2008), pp. 87–94 (2008)Google Scholar
  27. 27.
    Machina, M.: Dynamic inconsistency and non-expected utility models of choice under uncertainty. Journal of Economic Literature 27, 1622–1668 (1989)Google Scholar
  28. 28.
    Strotz, R.H.: Myopya and Time Inconsistency in Dynamic Utility Maximization. Review of Economic Studies 23(3), 165–180 (1956)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ariane Lambert-Mogiliansky
    • 1
  • Jerome Busemeyer
    • 2
  1. 1.Paris School of EconomicsFrance
  2. 2.Indiana UniversityUSA

Personalised recommendations