Skip to main content

Regeneration and Healing

  • Chapter
  • First Online:
Autologous Resurfacing and Fracture Dowelling
  • 364 Accesses

Abstract

There are two models for studying degradation and lamination of hyaline articular cartilage: the Silberberg mouse (Silberberg et al. 1965a, b) and the ACL-cut model on animals (Draenert and Draenert 1981). The Silberberg mouse develops during the first year of severe varus osteoarthritis in the knee joint. The varus deformation is induced by hormones. The osteoarthritis reveals all signs of a progredient degradation of the joint with the development of osteophytes (Fig. 4.1) and destruction of the hyaline cartilage, which is abraded in layers (Figs. 4.2 and 4.3). Simultaneous with the destruction, reparation processes with newly produced ground substance and proliferating cells can be observed (Fig. 4.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agholme F, Li X, Isaksson H et al (2010) Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res 25:2412–2418

    Article  PubMed  CAS  Google Scholar 

  • Altmann K (1950) Untersuchungen über Frakturheilung unter besonderen experimentellen Bedingungen. Z Anat Entwicklungsges 115:52–81

    Article  Google Scholar 

  • Angermann P, Riegels-Nielsen P (1990) Fibrin fixation of osteochondral talar fracture. Acta Orthop Scand 61:551–553

    Article  PubMed  CAS  Google Scholar 

  • Axhausen G (1908a) Histologische Untersuchungen über Knochentransplantationen am Menschen. Dtsch Z Chir 91:388–428

    Article  Google Scholar 

  • Axhausen G (1908b) Die pathologisch-anatomischen Grundlagen der Lehre von der freien Knochentrans­plantation beim Menschen und Tier. Med klin Beihefte 2:23

    Google Scholar 

  • Bachelin P, Bugmann P (1988) Active subluxation in extension radiological control in intercondylar eminence fractures in childhood. Z Kinderchir 43:180–182

    PubMed  CAS  Google Scholar 

  • Barber FA, Prudich JF (1993) Acute traumatic knee hemarthrosis. Arthroscopy 9:174–176

    Article  PubMed  CAS  Google Scholar 

  • Baudenbacher R, Ricklin P (1983) Knochenspanbolzung bei osteochondralen Kleinfragfrakturen und Osteochond­rosis dissecans. Helv Chir Acta 50:655–661

    Google Scholar 

  • Benedetto KP, Sperner G, Glotzer W (1980) Knee joint hemarthrosis – differential diagnostic considerations for planning an operation. Orthopaede 19:69–76

    Google Scholar 

  • Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg 41-A:988–1020

    PubMed  CAS  Google Scholar 

  • Bier A (1917) Über Knochenregeneration über Pseudarthrosen und Knochentransplantate. Arch Klin Chir 127:1–136

    Google Scholar 

  • Blasier RB, Burkus JK (1988) Management of the posterior fracture-dislocations of the shoulder. Clin Orthop 232:197–204

    PubMed  Google Scholar 

  • Bohart PG, Gelbermann RH, Vandell RF et al (1982) Complex dislocations of the metacarpophalangeal joint. Clin Orthop 164:208–225

    PubMed  Google Scholar 

  • Bomberg BC, McGinty JB (1990) Acute hemarthrosis of the knee: indications for diagnostic arthroscopy. Arthroscopy 6:221–225

    Article  PubMed  CAS  Google Scholar 

  • Butler JC, Andrews JR (1988) The role of arthroscopic surgery in the evaluation of acute traumatic hemarthrosis of the knee. Clin Orthop 228:150–152

    PubMed  Google Scholar 

  • Charnley J (1948) Positive pressure in arthrodesis of the knee joint. J Bone Joint Surg 30-B:478–486

    Google Scholar 

  • Charnley J (1953) Compression arthrodesis; including central dislocation as a principle in hip surgery. Livingstone, Edinburgh

    Google Scholar 

  • Danis R (1949) Théorie et pratique de l’ostéosynthèse. Masson, Paris

    Google Scholar 

  • Dell’accio F, Vincent TL (2010) Joint surface defects: clinical corse and cellular response in spontaneous and experimental lesions. Eur Cell Mater 20:210–217

    PubMed  Google Scholar 

  • Draenert K, Draenert Y (1979) The architecture of metaphyseal bone healing SEM. SEM Inc, O’Hare, pp 521–528

    Google Scholar 

  • Draenert Y, Draenert K (1981) Histo-Morphologie der Tangentialfaserschicht nach Kreuzbandläsion Eine tierexperimentelle Studie am Kniegelenk der Ratte. In: Jäger M Hackenbroch MH, Refior HJ (eds) Kapselbandläsionen des Kniegelenkes. Georg Thieme, Stuttgart, pp 88–92

    Google Scholar 

  • Draenert ME (2012) “Drug Delivery”- Systeme für den Knochenaufbau. Experimentelle Studie als Grundlage für die Augmentation der Kieferknochen in der Parodontologie. Habilitationsschrift an der Ludwig-Maximilians Universität München

    Google Scholar 

  • Du Hamel HL (1739) Sur une racine qui a la faculté de teindre en rouge les os des animaux vivants. Mém de Mathématique et de Physique de l’Académie Royale des Sciences, Paris, pp 1–13

    Google Scholar 

  • Dupuytren G (1820) Exposé de la doctrine de M le Professeur Dupuytren sur le cal. Par Samson L J J des Sciences méd. Masson, Paris

    Google Scholar 

  • Dutkowsky J, Freeman BL (1989) Fracture-dislocation of the articular surface of the third metatarsal head. Foot Ankle 10:43–44

    PubMed  CAS  Google Scholar 

  • Feder KS, Schonholtz GJ (1992) Ankle arthroscopy: review and long-term results of the talus. J Foot Surg 31:134–140

    Google Scholar 

  • Frank A, Cohen P, Beaufils P et al (1989) Arthroscopic treatment of osteochondral lesions of the talar dome. Arthroscopy 5:57–61

    Article  PubMed  CAS  Google Scholar 

  • Frenkel SR, Saadeh PB, Mehrara BJ et al (2000) Transforming growth factor beta superfamily members: role in cartilage modeling. Plast Reconstr Surg 105:980–990

    Article  PubMed  CAS  Google Scholar 

  • Garde U (1995) Histomorphologie der primären Knochenheilung der Osteochondralfraktur. Die knöchernen Umbauvorgänge und restitutio ad integrum im Tierexperiement. Habilitationsschrift Universität, Trnava

    Google Scholar 

  • Gerard Y, Bernier JM, Ameil M (1989) Osteochondral lesions of the talus. Rev Chir Orthop 75:466–478

    PubMed  CAS  Google Scholar 

  • Gilbert TJ, Johnson E, Detlie T et al (1993) Radiologic case study patellar dislocation: medial retinacular tears avulsion fractures and osteochondral fragments. Orthopaedics 16:732–736

    Google Scholar 

  • Gilley JS, Gelman MI, Edson DM et al (1981) Chondral fractures of the knee. Arthrographic arthroscopic and clinical manifestations. Radiology 138:51–54

    PubMed  CAS  Google Scholar 

  • Green DP, O’Brien ET (1980) Classification and management of carpal dislocations. Clin Orthop 149:55–72

    PubMed  Google Scholar 

  • Gross AE, McKee NH, Pritzker KP et al (1983) Reconstruction of skeletal deficits at the knee. A comprehensive osteochondral transplant program. Clin Orthop 174:96–106

    PubMed  Google Scholar 

  • Hämmerle CP, Jacob RP (1980) Chondral and osteochondral fractures after luxation of the patella and their treatment. Arch Orthop Trauma Surg 97:207–211

    Article  PubMed  Google Scholar 

  • Hardaker WJ Jr, Garrett WE Jr, Bassett FH (1990) Evaluation of acute traumatic hemarthrosis of the knee joint. South Med J 83:640–644

    Article  PubMed  Google Scholar 

  • Hintsche E (1927) Untersuchungen an Stützgeweben. I Teil: Über die Bedeutung der Gefässkanäle im Knorpel und Befunden am distalen Ende des menschlichen Schenkelbeines. Z Mikrosk Anat Forsch 12:61–126

    Google Scholar 

  • Holzheimer R, Kunze K (1987) Osteochondral fracture in the area of the ankle joint. Unfallchir 13:223–224

    Article  CAS  Google Scholar 

  • Hontas MJ, Haddad RJ, Schlesinger LC (1986) Conditions of the talus in the runner. Am J Sports Med 14:486–490

    Article  PubMed  CAS  Google Scholar 

  • Hunter J (1798) Experiments and observations on the growth of bones. In: Palmer JF (1835) The works of John Hunter FR. Longman Rees Orme Brown Green and Longman, London, pp 315–318

    Google Scholar 

  • Huylebroek JF, Martens M, Simon JP (1985) Transchondral talar dome fracture. Arch Orthop Trauma Surg 104:238–241

    Article  PubMed  CAS  Google Scholar 

  • Isaacs CL, Schreiber FC (1992) Patellar osteochondral fracture: the unforeseen hazard of golf. Am J Sorts Med 16:29–38

    Google Scholar 

  • Jones P (1987) Fatigue failure osteochondral fracture of the proximal phalanx of the great toe. Am J Sports Med 16:616–618

    Article  Google Scholar 

  • Karlsson C, Lindahl A (2009) Articular cartilage stem cell signaling. Arthritis Res Ther 11:121

    Article  PubMed  CAS  Google Scholar 

  • Keller J, Andreassen TT, Joyce F et al (1985) Fixation of osteochondral fractures Fibrin sealant tested in dogs. Acta Orthop Scand 56:323–326

    Article  PubMed  CAS  Google Scholar 

  • Kenny CH (1981) Inverted osteochondral fracture of the talus diagnosed by tomography. J Bone Joint Surg 63-A:1020–1021

    Google Scholar 

  • König F (1927) Über den Abbau an gebrochenen Knochen, Sein Wesen und seine Bedeutung. Arch klin Chir 146:624–643

    Google Scholar 

  • Kristensen G, Lind T, Lavard P et al (1990) Fracture stage 4 of the lateral talar dome treated arthroscopically using Biofix for fixation. Arthroscopy 6:242–244

    Article  PubMed  CAS  Google Scholar 

  • Krompecher St (1934) Die Entwicklung der Knochenzellen und die Bildung der Knochengrundsubstanz bei der knorpelig und bindegewebig vorgebildeten sowie der primär reinen Knochenbildung Verh Anat Ges Würzburg pp 34–38

    Google Scholar 

  • Kusnick C, Hayward I, Sartoris DJ et al (1987) Radiographic evaluation of joints resurfaced with osteochondral shell allografts. Am J Roentgenol 149:743–748

    CAS  Google Scholar 

  • Lane WA (1914) The operative treatment of fractures, 2nd edn. The Publishing Cy, London

    Google Scholar 

  • Lange RH, Engber WD, Clancy WG (1986) Expanding applications for the Herbert scaphoid screw. Orthopaedics 9:1393–1397

    CAS  Google Scholar 

  • Laredo JD, Bellaiche L, Hamze B (1993) The role of MRI of the knee. Ann Radiol 36:200–206

    PubMed  CAS  Google Scholar 

  • Larson B, Light TR, Ogden JA (1987) Fracture and ischemic necrosis of the immature scaphoid. J Hand Surg (Am) 12:122–127

    CAS  Google Scholar 

  • Lewis PL, Foster BK (1990) Herbert screw fixation of osteochondral fractures about the knee. Austr N Z J Surg 60:511–513

    Article  CAS  Google Scholar 

  • Lexer E (1936) Der Einfluss der Sympathikusunterbre­chung auf die Knochenbruchheilung im Tierversuch. Arch Klin Chir 186:242–243

    Google Scholar 

  • Light TR, Ogden JA (1988) Complex dislocation of the index metacarpophalangeal joint in children. J Pediatr Orthop 8:300–305

    Article  PubMed  CAS  Google Scholar 

  • Lubarsch O (1930) Zur Lehre von der Metaplasie. Dtsch Z Chir 227:48

    Article  Google Scholar 

  • Lutten C, Lorenz H, Thomas W (1988) Refixation bei der Osteochondrosis dissecans mit resorbierbarem Material unter Verlaufsbeobachtung mit der Kern­spintomographie (MR). Sportverletz Sportschaden 2:61–68

    Article  PubMed  CAS  Google Scholar 

  • Maquire JK, Canale ST (1993) Fractures of the patella in children and adolescents. J Pediatr Orthop 13:567–571

    Google Scholar 

  • Matzen PF (1952) Vom Einfluss mechanischer Einwirkungen auf die Kallusbildung. I Teil. Bruns Beitr Klin Chir 184:147–179

    Google Scholar 

  • Matzen PF (1954) Vom Einfluss mechanischer Einwirkungen auf die Kallusbildung. II Teil. Bruns Beitr Klin Chir 188:97–108

    PubMed  CAS  Google Scholar 

  • Mazel C, Rigault P, Padovani JP et al (1986) Fractures of the talus in children. Apropos of 23 cases. Rev Chir Orthop Reparatrice 72:183–195

    CAS  Google Scholar 

  • McElfresh EC, Dobyns JH (1983) Intra-articular metacarpal head fractures. J Hand Surg 8(4):383–393

    CAS  Google Scholar 

  • McNamee PB, Bunker TD, Scott TD (1988) The Herbert screw for osteochondral fractures. J Bone Joint Surg 70-B:145–146

    Google Scholar 

  • Meyers MH, Herron M (1984) A fibrin adhesive seal for the repair of osteochondral fracture fragments. Clin Orthop 182:258–263

    PubMed  CAS  Google Scholar 

  • Miligram JW (1985) Case report: osteochondral fracture of the right patella without an osteochondral defect. Skeletal Radiol 14:231–234

    Article  Google Scholar 

  • Mink JH, Deutsch AL (1989) Occult cartilage and bone injuries of the knee: detection classification and assessment with MR imaging. Radiology 170:823–829

    PubMed  CAS  Google Scholar 

  • Myllynen P, Alberty-Ryoppy A, Harilainen A (1986) Cortical bone pegs in the treatment of osteochondral fracture of the knee. Ann Chir Gynaecol 75:160–163

    PubMed  CAS  Google Scholar 

  • Noyes FR, Paulos L, Mooar LA et al (1980) Knee sprains and acute knee hemarthrosis: misdiagnosis of anterior cruciate ligament tears. Phys Ther 60:1596–1601

    PubMed  CAS  Google Scholar 

  • Ollier L (1867) Traité expérimentale et clinique de la régénération des os et de la production artificielle du tissu osseux. Masson, Paris

    Google Scholar 

  • Otsuki S, Grogan SP, Miyaki S et al (2010) Tissue neogenesis and STRO-1 expression in immature and mature articular cartilage. J Orthop Res 28:96–102

    PubMed  Google Scholar 

  • Ove PN, Bosse MJ, Reinert CM (1989) Excision of posterolateral talar dome lesions through a medial transmalleolar approach. Foot Ankle 9:171–175

    PubMed  CAS  Google Scholar 

  • Paar O, Boszotta H (1991) Avulsion fractures of the knee and upper ankle joint. Classification and therapy. Chirurg 62:121–125

    PubMed  CAS  Google Scholar 

  • Parisien JS, Vangsness T (1985) Operative arthroscopy of the ankle. Three year’s experience. Clin Orthop 199:46–53

    PubMed  Google Scholar 

  • Pauwels F (1940) Grundriss einer Biomechanik der Frakturheilung. Verh Dtsch Orthop Ges 34:62–108

    Google Scholar 

  • Pauwels F (1960) Eine neue Theorie über den Einfluss mechanischer Reize auf die Differenzierung der Stützgewebe. Z Anat Entwicklungsges 121:478–515

    Article  CAS  Google Scholar 

  • Perren SM, Boitzy A (1978) Cellular differentiation and bone biomechanics during the consolidation of a fracture. Anat Clinica 1:13–28

    Article  Google Scholar 

  • Perren SM, Cordey J (1977) Die Gewebsdifferenzierung in Frakturheilung. Z Unfallheilk 80:161–164

    CAS  Google Scholar 

  • Pettine KA, Morrey BF (1987) Osteochondral fractures of the talus. A long-term follow-up. J Bone Joint Surg 69-A:89–92

    Google Scholar 

  • Quintin A, Schizas C, Scaletta C et al (2010) Plasticity of fetal cartilaginous cells. Cell Transplant 19:1349–1357

    Article  PubMed  Google Scholar 

  • Rae PS, Khasawneh ZM (1988) Herbert screw fixation of osteochondral fractures of the patella. Injury 19:116–119

    Article  PubMed  CAS  Google Scholar 

  • Ragnarsson B, Danckwardt-Lilliestrom G, Mjoberg B (1992) The triradiate incision for acetabular fractures. A prospective study of 23 cases. Acta Orthop Scand 63:515–519

    Article  PubMed  CAS  Google Scholar 

  • Rees W, Thompson SK (1985) Osteochondral fractures of the patella. A method of fixation. J R Coll Surg Edinb 30:88–90

    PubMed  CAS  Google Scholar 

  • Runow A (1983) The dislocating patella. Etiology and prognosis in relation to generalized joint laxity and anatomy of the patellar articulation. Acta Orthop Scand 201:1–53

    CAS  Google Scholar 

  • Saffar P (1984) Carpal luxation and residual instability. Ann Chir Main 3:349–352

    Article  PubMed  CAS  Google Scholar 

  • Schenk R, Willenegger H (1963) Zum histologischen Bild der sogenannten Primärheilung der Knochenkompakta nach experimentellen Osteotomien am Hund. Experientia 19:593–595

    Article  PubMed  CAS  Google Scholar 

  • Schild H, Ahlers J (1987) Traumatology of the knee joint – radiologic and accident surgery aspects. Part 1. Roentgenblätter 40:263–269

    CAS  Google Scholar 

  • Schlag G, Redl H (1988) Fibrin sealant in orthopaedic surgery. Clin Orthop 227:269–285

    PubMed  CAS  Google Scholar 

  • Schnettler R (1992) Vergleichende Untersuchungen zum Einwachsverhalten von autogenen und allogenen Spongiosatransplantaten im Vergleich zu Keramik, DBM und basischem Fibroblastenwachstumsfaktor (bFGF). Habilitationsschrift. Universität Leipzig

    Google Scholar 

  • Silberberg M, Silberberg R, Hasler M (1965a) Early effects of somatotropin on the fine structure of articular cartilage. Anat Rec 151:297–314

    Article  PubMed  CAS  Google Scholar 

  • Silberberg R, Hasler M, Silberberg M (1965b) Submicroscopic response of articular cartilage of mice treated with estrogenic hormone. Am J Path 46:289–305

    PubMed  CAS  Google Scholar 

  • Stanitski CL, Harvell JC, Fu F (1993) Observations on acute knee hemarthrosis in children and adolescents. J Pediatr Orthop 13:506–510

    Article  PubMed  CAS  Google Scholar 

  • Stripling WD (1982) Displaced intra-articular osteochondral fracture-cause for irreducible dislocation of the distal interphalangeal joint. J Hand Surg (Am) 7:77–78

    CAS  Google Scholar 

  • Sun J, Hou XK, Kuang Y et al (2011) Influence of the unevenness of articular cartilage surface on the osteochondral repair. Zhongguo Gu Shang 24:505–508

    PubMed  Google Scholar 

  • Tehranzadeh J, Vanarthos W, Pais MJ (1990) Osteochondral impaction of the femoral head associated with hip dislocation: CT study in 35 patients. Am J Roentgenol 155:1049–1052

    CAS  Google Scholar 

  • Tokuhara Y, Wakintani S, Imai Y et al (2010) Repair of experimentally induced large osteochondral defects in rabbit knee with various concentrations of Escherichia coli-derived recombinant human bone morphogenetic protein-2. Int Orthop 34:761–767

    Article  PubMed  Google Scholar 

  • Torg JS, Pavlov H, Morris VB (1981) Salter-Harris type III fracture of the medial femoral condyle occurring in the adolescent athlete. J Bone Joint Surg 63-A:568–591

    Google Scholar 

  • Urist MR, Silverman BF, Buring K et al (1967) The bone induction principle. Clin Orthop 53:243–283

    PubMed  CAS  Google Scholar 

  • Vellet AD, Marks PH, Fowler PJ et al (1991) Occult posttraumatic osteochondral lesions of the knee: prevalence classification and short-term sequelae evaluated with MR imaging. Radiology 178:271–276

    PubMed  CAS  Google Scholar 

  • Virchow R (1884) Über Metaplasie. Virchows Arch 97:410

    Article  Google Scholar 

  • Visuri T, Kuusela T (1989) Fixation of large osteochondral fractures of the patella with fibrin adhesive system. A report of two operative cases. Am J Sports Med 17:842–845

    Article  PubMed  CAS  Google Scholar 

  • Voetsch A (1847) Die Heilung der Knochenbrüche per primam intentionem. Winter, Heidelberg

    Google Scholar 

  • Wagner H (1963) Die Einbettung von Metallschrauben im Knochen und die Heilungsvorgänge des Kno­chengewebes unter dem Einfluss der stabilen Osteosynthese. Langenbecks Arch klin Chir 305:28–41

    CAS  Google Scholar 

  • Wasilewski SA, Frankl U (1992) Osteochondral avulsion fracture of femoral insertion of anterior cruciate ligament. Case report and review of literature. Am J Sports Med 20:224–226

    Article  PubMed  CAS  Google Scholar 

  • Weh L, Korn U, Dahmen G (1982) Freie Gelenkkörper im Kniegelenk. Ätiologie, Klinik und therapeutisches Konzept. Fortschr Med 100:1939–1943

    PubMed  CAS  Google Scholar 

  • Wertheimer SJ, Balzsy JE (1992) A unique osteochondral fracture of the first metatarsophalangeal joint. J Foot Surg 31:49–67

    Google Scholar 

  • Wilson WJ, Scranton PE Jr (1990) Combined reconstruction of the anterior cruciate ligament in competitive athletes. J Bone Joint Surg 72-A:742–748

    Google Scholar 

  • Wurmbach H (1928) Histologische Untersuchungen über die Heilung von Knochenbrüchen bei Säugern. Z Zool 132:200–256

    Google Scholar 

  • Zilch H, Talke M (1987) Fibrogen glue in osteochondral fractures with small fragments of the upper limb. Ann Chir Main 6:173–176

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Draenert, K., Draenert, Y., Pohlemann, T., Regel, G. (2012). Regeneration and Healing. In: Autologous Resurfacing and Fracture Dowelling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24911-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24911-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24910-5

  • Online ISBN: 978-3-642-24911-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics