Skip to main content

An Algorithm for Finding Gene Signatures Supervised by Survival Time Data

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6881))

  • 1289 Accesses

Abstract

Signature learning from gene expression consists into selecting a subset of molecular markers which best correlate with prognosis. It can be cast as a feature selection problem. Here we use as optimality criterion the separation between survival curves of clusters induced by the selected features. We address some important problems in this fields such as developing an unbiased search procedure and significance analysis of a set of generated signatures. We apply the proposed procedure to the selection of gene signatures for Non Small Lung Cancer prognosis by using a real data-set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh, A.A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)

    Article  Google Scholar 

  2. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences of the United States of America 99(10), 6562–6566 (2002)

    Article  MATH  Google Scholar 

  3. Boutros, P.C., Lau, S.K., Pintilie, M., Liu, N., Sheperd, F.A., Der, D.S., Tao, M., Penn, L.Z., Jurisca, I.: Prognostic gene signatures for non-small-cell lung cancer Arch. Rat. Mech. Anal. 78, 315–333 (1982)

    Article  Google Scholar 

  4. Cai, Y.D., Huang, T., Feng, K.-Y., Hu, L., Xie, L.: A unified 35-gene signature for both subtype classification and survival prediction in diffuse large B-cell lymphomas. PloS one 5(9), e12726 (2010)

    Article  Google Scholar 

  5. Ceccarelli, M., Maratea, A.: Improving fuzzy clustering of biological data by metric learning with side information. International Journal of Approximate Reasoning 47(1), 45–57 (2008)

    Article  MATH  Google Scholar 

  6. Chang, H., Nuyten, D., et al.: Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. PNAS 102(10), 3738–3743 (2005)

    Article  Google Scholar 

  7. Chen, H.-Y., et al.: A Five-Gene Signature and Clinical Outcome in NonSmall-Cell Lung Cancer. The New England Journal of medicine 356(1), 11 (2007)

    Article  Google Scholar 

  8. Van De Vijver, M.J., et al.: A gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine 347(25), 1999–2009 (2002)

    Article  Google Scholar 

  9. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531 (1999)

    Article  Google Scholar 

  10. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  11. Jain, A.K., Zongker, D.: Feature Selection: Evaluation, Application, and Small Sample Performance. IEEE Trans. Pattern Analysis and Machine Intelligence 19(2), 153–158 (1997)

    Article  Google Scholar 

  12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. Wiley, Chichester (1990)

    Book  MATH  Google Scholar 

  13. Lapointe, et al.: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 101(3), 801 (2004)

    Article  Google Scholar 

  14. Lau, S., et al.: Three-gene prognostic classifier for early-stage non–small-cell lung cancer. Journal of Clinical Oncology 25(25), 5562–5566 (2007)

    Article  Google Scholar 

  15. Lisboa, P., Velido, A., Tagliaferri, R., Ceccarelli, M., Martin-Guerrero, J., Biganzoli, E.: Data Mining in Cancer Research. IEEE Computational Intelligence Magazine 5(1), 14–18 (2010)

    Article  Google Scholar 

  16. Mantel, N.: Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50(3), 163–170 (1966)

    Google Scholar 

  17. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern. Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  18. Sørlie, T., et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America 98(19), 10869 (2001)

    Article  Google Scholar 

  19. Rousseeuw, P.J., van Driessen, K.: A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 41, 212–223 (1999)

    Article  Google Scholar 

  20. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Welch, W.J.: Construction of Permutation Tests. Journal of the American Statistical Association 85(411), 693–698 (1990)

    Article  Google Scholar 

  22. Zhang, X., Qian, X.L., Xu, X.-Q., Leung, H.-C., Harris, L., Iglehart, J., Miron, A., Liu, J., Wong, W.: Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 7, 197 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pagnotta, S.M., Ceccarelli, M. (2011). An Algorithm for Finding Gene Signatures Supervised by Survival Time Data. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2011. Lecture Notes in Computer Science(), vol 6881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23851-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23851-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23850-5

  • Online ISBN: 978-3-642-23851-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics