Fourier-Information Duality in the Identity Management Problem

  • Xiaoye Jiang
  • Jonathan Huang
  • Leonidas Guibas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6912)


We compare two recently proposed approaches for representing probability distributions over the space of permutations in the context of multi-target tracking. We show that these two representations, the Fourier approximation and the information form approximation can both be viewed as low dimensional projections of a true distribution, but with respect to different metrics. We identify the strengths and weaknesses of each approximation, and propose an algorithm for converting between the two forms, allowing for a hybrid approach that draws on the strengths of both representations. We show experimental evidence that there are situations where hybrid algorithms are favorable.


Identity Management Tracking Accuracy Information Form Simulated Crowd Loopy Belief Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agrawal, S., Wang, Z., Ye, Y.: Parimutuel betting on permutations. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 126–137. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 89–98 (2003)Google Scholar
  3. 3.
    Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics (1988)Google Scholar
  4. 4.
    Heath, K., Guibas, L.J.: Multi-person tracking from sparse 3d trajectories in a camera sensor network. In: Proceedings of IEEE ICDSC (2008)Google Scholar
  5. 5.
    Huang, B., Jebara, T.: Approximating the permanent with belief propagation. Computing Research Repository (2009)Google Scholar
  6. 6.
    Huang, J., Guestrin, C., Guibas, L.J.: Fourier theoretic probabilistic inference over permutations. Journal of Machine Learning Reserach (JMLR) 10, 997–1070 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Huang, J., Guestrin, C., Jiang, X., Guibas, L.J.: Exploiting probabilistic independence for permutations. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, AISTATS (2009)Google Scholar
  8. 8.
    Huber, M., Law, J.: Fast approximation of the permanent for very dense problems. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 681–689 (2008)Google Scholar
  9. 9.
    Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. In: ACM Symposium on Theory of Computing, pp. 712–721 (2001)Google Scholar
  10. 10.
    Kasteleyn, P.W.: The statistics of dimers on a lattice. i. the number of dimer arrangements on a quadratic lattice. Physica, pp. 1209–1225 (1961)Google Scholar
  11. 11.
    Kondor, R., Howard, A., Jebara, T.: Multi-object tracking with representations of the symmetric group. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, AISTATS (2007)Google Scholar
  12. 12.
    Ryser, H.: Combinatorial Mathematics - The Carus Mathematical Monographs Series. The Mathematical Association of America (1963)Google Scholar
  13. 13.
    Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Schumitsch, B., Thrun, S., Bradski, G., Olukotun, K.: The Information-Form Data Association Filter. In: Proceedings of the Neural Information Processing Systems (NIPS). MIT Press, Cambridge (2005)Google Scholar
  15. 15.
    Serre, J.-P.: Linear Representation of Finite Groups. Springer, Heidelberg (1977)CrossRefGoogle Scholar
  16. 16.
    Shin, J., Guibas, L.J., Zhao, F.: A distributed algorithm for managing multi-target identities in wireless ad-hoc sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 223–238. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Shin, J., Lee, N., Thrun, S., Guibas, L.J.: Lazy inference on object identities in wireless sensor networks. In: Proceeings of the International Conference on Information Processing in Sensor Networks, IPSN (2005)Google Scholar
  18. 18.
    Vontobel, P.: The bethe permanent of a non-negative matrix. In: Proceedings of the Allerton Conference on Communications, Control, and Computing (2010)Google Scholar
  19. 19.
    Watanabe, Y., Chertkov, M.: Belief propagation and loop calculus for the permanent of a non-negative matrix. Journal of Physics A: Mathematical and Theoretical 43(24), 242002 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite graph partitioning and data clustering. In: Proceedings of the International Conference on Information and Knowledge Management (CIKM), pp. 25–32 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaoye Jiang
    • 1
  • Jonathan Huang
    • 2
  • Leonidas Guibas
    • 1
  1. 1.Stanford UniversityStanfordUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations