Skip to main content

A Graph-Theoretic Approach to Multiobjective Permutation-Based Optimization

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2019)

Abstract

A Generalized Coordinate Method (GCM) for linear permutation-based optimization is presented as a generalization of the Modified Coordinate Localization Method and Modified Coordinate Method is presented, and its applications to multiobjective linear optimization on permutations are outlined. The method is based on properties of linear function on a transposition graph, a decomposition of the graph, and extracting from it a multidimensional grid graph, where a directed search of an optimal solution is performed. Depending on the search parameters, GCM yields an exact or approximate solution to the original problem. An illustrative example is given for the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a graph \(\mathbf G = (\mathbf V , \mathbf E )\) and a function \(f: \mathbf V \rightarrow \mathbb {R}^1\), \(\overrightarrow{\mathbf{G }} = (\mathbf V , \overrightarrow{\mathbf{E }})\) is a digraph, where \(\overrightarrow{\mathbf{E }}\) is formed as follows – \(\forall u,v\in \mathbf V \): (a) if \(f(u)< f(v) \), then \((u,v)\in \overrightarrow{\mathbf{E }}\); (a) if \(f(u)> f(v) \), then \((v,u)\in \overrightarrow{\mathbf{E }}\); (c) if \(f(u)= f(v) \), then \((u,v),(v,u)\in \overrightarrow{\mathbf{E }}\).

References

  1. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-74341-2

    Book  MATH  Google Scholar 

  2. Burkard, R.E.: Quadratic assignment problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 2741–2814. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_22

    Chapter  Google Scholar 

  3. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics (2012). https://doi.org/10.1137/1.9781611972238

  4. Chase, P.: Transposition graphs. SIAM J. Comput. 2, 128–133 (1973)

    Article  MathSciNet  Google Scholar 

  5. Donets, G.A., Kolechkina, L.N.: Method of ordering the values of a linear function on a set of permutations. Cybern. Syst. Anal. 45, 204–213 (2009)

    Article  MathSciNet  Google Scholar 

  6. Donec, G.A., Kolechkina, L.M.: Construction of Hamiltonian paths in graphs of permutation polyhedra. Cybernet. Syst. Anal. 46, 7–13 (2010)

    Article  MathSciNet  Google Scholar 

  7. Farzad, B., Pichugina, O., Koliechkina, L.: Multi-layer community detection. In: 2018 International Conference on Control, Artificial Intelligence, Robotics Optimization (ICCAIRO), pp. 133–140 (2018)

    Google Scholar 

  8. Ehrgott, M.: Multicriteria Optimization. Springer, New York (2005). https://doi.org/10.1007/3-540-27659-9

    Book  MATH  Google Scholar 

  9. Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization - theory, methodology, and applications. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, pp. 369–444. Springer, Boston (2003). https://doi.org/10.1007/0-306-48107-3_8

    Chapter  MATH  Google Scholar 

  10. Ganesan, A.: Automorphism group of the complete transposition graph. J. Algebr. Comb. 42, 793–801 (2015). https://doi.org/10.1007/s10801-015-0602-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Gimadi, E., Khachay, M.: Extremal Problems on Sets of Permutations (2016). (in Russian)

    Google Scholar 

  12. Grande, F.: On k-level matroids: geometry and combinatorics (2015). http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000100434

  13. Koliechkina, L.M., Dvirna, O.A.: Solving extremum problems with linear fractional objective functions on the combinatorial configuration of permutations under multicriteriality. Cybern. Syst. Anal. 53, 590–599 (2017)

    Article  Google Scholar 

  14. Koliechkina, L.N., Dvernaya, O.A., Nagornaya, A.N.: Modified coordinate method to solve multicriteria optimization problems on combinatorial configurations. Cybern. Syst. Anal. 50, 620–626 (2014). https://doi.org/10.1007/s10559-014-9650-4

    Article  MATH  Google Scholar 

  15. Koliechkina, L., Pichugina, O.: Multiobjective optimization on permutations with applications. DEStech Trans. Comput. Sci. Eng., 61–75 (2018). https://doi.org/10.12783/dtcse/optim2018/27922

  16. Koliechkina, L., Pichugina, O.: A horizontal method of localizing values of a linear function in permutation-based optimization. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019. AISC, vol. 991, pp. 355–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4_36

    Chapter  Google Scholar 

  17. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Heidelberg (2012). https://doi.org/10.1007/3-540-29297-7

    Book  MATH  Google Scholar 

  18. Kozin, I.V., Kryvtsun, O.V., Pinchuk, V.P.: Evolutionary-fragmentary model of the routing problem. Cybern. Syst. Anal. 51, 432–437 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kozin, I.V., Maksyshko, N.K., Perepelitsa, V.A.: Fragmentary structures in discrete optimization problems. Cybern. Syst. Anal. 53, 931–936 (2017)

    Article  MathSciNet  Google Scholar 

  20. Lane, T., Yackley, B., Plis, S., McCracken, S., Anderson, B.: Geometric embedding for learning combinatorial structures 3. http://citeseerx.ist.psu.edu/viewdoc/summary?doi.org/10.1.1.387.7534

  21. Lengauer, T.: Operations research and statistics. In: Combinatorial Algorithms for Integrated Circuit Layout. pp. 137–217. Vieweg+Teubner Verlag (1990)

    Google Scholar 

  22. Liu, X., Draper, S.C.: LP-decodable multipermutation codes. IEEE Trans. Inf. Theory 62, 1631–1648 (2016). https://doi.org/10.1109/TIT.2016.2526655

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehdi, M.: Parallel hybrid optimization methods for permutation based problems (2011). https://tel.archives-ouvertes.fr/tel-00841962/document

  24. Onwubolu, G.C., Davendra, D. (eds.): Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92151-6

    Book  MATH  Google Scholar 

  25. Pardalos, P.M., Du, D., Graham, R.L.: Handbook of Combinatorial Optimization. Springer, New York (2005). https://doi.org/10.1007/978-1-4419-7997-1

    Book  Google Scholar 

  26. Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-61007-8

    Book  MATH  Google Scholar 

  27. Pichugina, O.S., Yakovlev, S.V.: Continuous representations and functional extensions in combinatorial optimization. Cybern. Syst. Anal. 52(6), 921–930 (2016). https://doi.org/10.1007/s10559-016-9894-2

    Article  MathSciNet  MATH  Google Scholar 

  28. Pichugina, O., Yakovlev, S.: Euclidean combinatorial configurations: continuous representations and convex extensions. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) ISDMCI 2019. AISC, vol. 1020, pp. 65–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26474-1_5

    Chapter  Google Scholar 

  29. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer Science & Business Media, Heidelberg (2002)

    MATH  Google Scholar 

  30. Semenova, N.V., Kolechkina, L.N.: A polyhedral approach to solving multicriterion combinatorial optimization problems over sets of polyarrangements. Cybern. Syst. Anal. 45, 438–445 (2009). https://doi.org/10.1007/s10559-009-9110-8

    Article  MATH  Google Scholar 

  31. Stoyan, Y.G., Yemets’, O.: Theory and methods of Euclidean combinatorial optimization. ISSE, Kiev (1993). (in Ukrainian)

    Google Scholar 

  32. Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics, 2nd edn. Chapman and Hall/CRC, Boca Raton (2002)

    Book  Google Scholar 

  33. Yakovlev, S.V.: The theory of convex continuations of functions on vertices of convex polyhedra. Comp. Math. Math. Phys. 34, 1112–1119 (1994)

    MathSciNet  Google Scholar 

  34. Yakovlev, S., Pichugina, O., Yarovaya, O.: On optimization problems on the polyhedral-spherical configurations with their properties. In: 2018 IEEE First International Conference on System Analysis Intelligent Computing (SAIC), pp. 94–100 (2018). https://doi.org/10.1109/SAIC.2018.8516801

  35. Yakovlev, S., Pichugina, O., Yarovaya, O.: Polyhedral-spherical configurations in discrete optimization problems. J. Autom. Inf. Sci. 51, 26–40 (2019). https://doi.org/10.1615/JAutomatInfScien.v51.i1.30

    Article  Google Scholar 

  36. Yakovlev, S.V., Valuiskaya, O.A.: Optimization of linear functions at the vertices of a permutation polyhedron with additional linear constraints. Ukr. Math. J. 53, 1535–1545 (2001). https://doi.org/10.1023/A:1014374926840

    Article  Google Scholar 

  37. Yemelicher, V.A., Kovalëv, M.M., Dravtsov, M.K., Lawden, G.: Polytopes, Graphs and Optimisation. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  38. Yemets, O.A., Yemets, Y.M., Chilikina, T.V.: Combinatorial cutting while solving optimization nonlinear conditional problems of the vertex located sets. JAI(S) 42, 21–29 (2010). https://doi.org/10.1615/JAutomatInfScien.v42.i5.30

    Article  Google Scholar 

  39. Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995). https://doi.org/10.1007/978-1-4613-8431-1

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Pichugina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koliechkina, L., Pichugina, O., Yakovlev, S. (2020). A Graph-Theoretic Approach to Multiobjective Permutation-Based Optimization. In: Jaćimović, M., Khachay, M., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2019. Communications in Computer and Information Science, vol 1145. Springer, Cham. https://doi.org/10.1007/978-3-030-38603-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38603-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38602-3

  • Online ISBN: 978-3-030-38603-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics