Skip to main content

Detecting Visual Convergence for Stochastic Global Illumination

  • Chapter
Intelligent Computer Graphics 2011

Part of the book series: Studies in Computational Intelligence ((SCI,volume 374))

Abstract

Photorealistic rendering, based on unbiased stochastic global illumination, is now within reach of any computer artist by using commercially or freely available softwares. One of the drawbacks of these softwares is that they do not provide any tool for detecting when convergence is reached, relying entirely on the user for deciding when stopping the computations. In this paper we detail two methods that aim at finding perceptual convergence thresholds for solving this problem. The first one uses the VDP image quality measurement for providing a global threshold. The second one uses SVM classifiers which are trained and used on small subparts of images and allow to take into account the heterogeneity of convergence through the image area. These two approaches are validated by using experimentations with human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, L.S., Huang, C., Townshend, J.R.G.: An assessment of support vector machines for land cover classification. International Journal of Remote Sensing 23, 725–749 (2002)

    Article  Google Scholar 

  2. Daly, S.: The visible differences predictor: an algorithm for the assessment of image fidelity. In: Digital Images and Human Vision, vol. 4, pp. 124–125 (1993)

    Google Scholar 

  3. Farrugia, J.-P., Péroche, B.: A progressive rendering algorithm using an adaptive perceptually based image metric. Comput. Graph. Forum 23(3), 605–614 (2004)

    Article  Google Scholar 

  4. Itti, L.: Models of Bottom-Up and Top-Down Visual Attention. bu|td|mod|psy|cv, Pasadena, California (January 2000)

    Google Scholar 

  5. Joachims, T.: Estimating the generalization performance of a SVM efficiently. In: Langley, P. (ed.) Proceedings of ICML 2000, 17th International Conference on Machine Learning, Stanford, US, pp. 431–438. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  6. Kajiya, J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20(4), 143–150 (1986)

    Article  Google Scholar 

  7. Koch, C., Ullman, S.: Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)

    Google Scholar 

  8. Longhurst, P., Chalmers, A.: User validation of image quality assessment algorithms. In: Theory and Practice of Computer Graphics, EGUK 2004, pp. 196–202. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  9. LuxRender, http://www.luxrender.net/en_GB/index

  10. Melgani, F., Bruzzone, L.: Classification of Hyperspectral Remote Sensing Images With Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing 42, 1778–1790 (2004)

    Article  Google Scholar 

  11. Myszkowski, K.: The visible differences predictor: applications to global illumination problems. In: Eurographics Rendering Workshop, pp. 233–236 (1998)

    Google Scholar 

  12. NextLimit, http://www.maxwellrender.com/

  13. Niebur, E., Itti, L., Koch, C.: Controlling the focus of visual selective attention. In: Van Hemmen, L., Domany, E., Cowan, J. (eds.) Models of Neural Networks IV. Springer, Heidelberg (2001)

    Google Scholar 

  14. Pattanaik, S.N., Ferwerda, J.A., Fairchild, M.D., Greenberg, D.P.: A multiscale model of adaptation and spatial vision for realistic image display. Computer Graphics 32(Annual Conference Series), 287–298 (1998)

    Google Scholar 

  15. Ramasubramanian, M., Pattanaik, S.N., Greenberg, D.P.: A perceptually based physical error metric for realistic image synthesis. In: Rockwood, A. (ed.) Siggraph 1999, Computer Graphics Proceedings, Los Angeles, pp. 73–82. Addison Wesley Longman, Amsterdam (1999)

    Google Scholar 

  16. Russ, J.C.: The Image Processing Handbook. CRC Press, Boca Raton (1992)

    Google Scholar 

  17. Sarnoff Corporation. Sarnoff JND vision model algorithm description and testing, VQEG (August 1997)

    Google Scholar 

  18. Takouachet, N.: Utilisation de critères perceptifs pour la dètermination d’une condition d’arrêt dans les mèthodes d’illumination gobale. PhD thesis, Universitè du Littoral Côte d’Opale (January 2009)

    Google Scholar 

  19. Takouachet, N., Delepoulle, S., Renaud, C.: A perceptual stopping condition for global illumination computations. In: Proc. Spring Conference on Computer Graphics (2007)

    Google Scholar 

  20. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognit. Psychol. 12(1), 97–136 (1980)

    Article  Google Scholar 

  21. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  22. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1995)

    MATH  Google Scholar 

  23. Veach, E., Guibas, L.J.: Metropolis light transport. Computer Graphics 31(Annual Conference Series), 65–76 (1997)

    Google Scholar 

  24. Yee, H.: A perceptual metric for production testing. Journal of Graphics Tools 9(4), 33–40 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Renaud, C., Delepoulle, S., Takouachet, N. (2012). Detecting Visual Convergence for Stochastic Global Illumination. In: Plemenos, D., Miaoulis, G. (eds) Intelligent Computer Graphics 2011. Studies in Computational Intelligence, vol 374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22907-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22907-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22906-0

  • Online ISBN: 978-3-642-22907-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics