Skip to main content

Abstract

Nowadays, a simple query in Google image search will return millions of results. Apparently this is not because existing vision technologies for object recognition are performing at such a high-level4; on the contrary, while human beings can recognize objects with little difficulty, artificial vision systems are far from matching the accuracy, speed and generality of human vision [1]. Potential applications enabled by solving the object recognition problem are enormous, content-based image retrieval, object tracking, robot navigation, automated surveillance, etc. are some that come to mind. Object recognition is usually described as a high-dimensional classification problem where only a small number of training samples (compared to the data dimensionality) are available. Consequently, it is extremely difficult, if not impossible, to construct an efficient single classification rule. Ensemble learning is a method for constructing accurate classifiers from an ensemble of weak predictors or base classifiers. During the past decade, ensemble learning methods have been extensive studied for various disciplines. In this chapter, we review influential works along recent topics of ensemble learning approaches devised for recognizing and tracking objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ponce J, Hebert M, Schmid C et al (2007) Toward Category-Level Object Recognition. In: Lecture Notes in Computer Science. Springer, New York

    Google Scholar 

  2. Freund Y, Schapire R (1996) Experiments with a New Boosting Algorithm. In: International Conference on Machine Learning (ICML), pp 148–156

    Google Scholar 

  3. Breiman L (1996) Bagging Predictors. Journal of Machine Learning, 24(2): 123–140

    MathSciNet  MATH  Google Scholar 

  4. Pentland A, Moghaddam B, Starner T (1994) View-based and Modular Eigenspaces for Face Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR′94), pp 84–91

    Google Scholar 

  5. Sanderson C, Paliwal K K (2004) Identity Verification Using Speech and Face Information. Digital Signal Processing, 14(5): 449–480

    Article  Google Scholar 

  6. Ho T K (1998) The Random Subspace Method for Constructing Decision Forests. IEEE Trans Pattern Anal Mach Intell, 20(8): 832–844

    Article  Google Scholar 

  7. Wang X, Tang X (2004) Random Sampling LDA for Face Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR′04), pp 259–265

    Google Scholar 

  8. Harandi M T, Ahmadabadi M N, Araabi B N et al (2010) Directed Random Subspace Method for Face Recognition. In: International Conference on Pattern Recognition (ICPR’10), 2010a. pp 2688–2691

    Google Scholar 

  9. Kuncheva L I (2002) A Theoretical Study on Six Classifier Fusion Strategies. IEEE Trans Pattern Anal Mach Intell, 24(2): 281–286

    Article  Google Scholar 

  10. Lam L, Suen C Y (1997) Application of Majority Voting to Pattern Recognition: An Analysis of its Behavior and Performance. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, 27(5): 553–568

    Article  Google Scholar 

  11. Ho T K, Hull J J, Srihari S N (1994) Decision Combination in Multiple Classifier Systems. IEEE Trans Pattern Anal Mach Intell, 16(1): 66–75

    Article  Google Scholar 

  12. Kittler J, Hatef M, Duin R P W et al (1998) On Combining Classifiers. IEEE Trans Pattern Anal Mach Intell, 20(3): 226–239

    Article  Google Scholar 

  13. Cho S-B, Kim J H (1995) Combining Multiple Neural Networks by Fuzzy Integral for Robust Classification. IEEE Transactions on Systems, Man and Cybernetics, 25(2): 380–384

    Article  Google Scholar 

  14. Kuncheva L I (2003) “Fuzzy” Versus “Nonfuzzy” in Combining Classifiers Designed by Boosting. IEEE Trans on Fuzzy Systems, 11(6): 729–741

    Article  Google Scholar 

  15. Verikas A, Lipnickas A, Malmqvist K et al (1999) Soft Combination of Neural Classifiers: A Comparative Study. Pattern Recognition Letters, 20(4): 429–444

    Article  Google Scholar 

  16. Altincay H (2005) A Dempster-shafer Theoretic Framework for Boosting Based Ensemble Design. Pattern Analysis and Applications, 8(3): 287–302

    Article  MathSciNet  Google Scholar 

  17. Bi Y, Guan J, Bell D (2008) The Combination of Multiple Classifiers Using an Evidential Reasoning Approach. Artificial Intelligence, 172(15): 1731–1751

    Article  MATH  Google Scholar 

  18. Al-Ani A, Deriche M (2002) A new Technique for Combining Multiple Classifiers Using the Dempster-Shafer Theory of Evidence. Journal of Artificial Intelligence Research, 17: 333–361

    MathSciNet  MATH  Google Scholar 

  19. Quost B, Denoux T, Masson M H (2007) Pairwise Classifier Combination Using Belief Functions. Pattern Recognition Letters, 28(5): 644–653

    Article  Google Scholar 

  20. Gama J, Brazdil P (2000) Cascade Generalization. Machine Learning, 41(3): 315–343

    Article  MATH  Google Scholar 

  21. Wolpert D H (1992) Stacked Generalization. Neural Networks, 5(2): 241–259

    Article  MathSciNet  Google Scholar 

  22. Wang X, Tang X (2005) Subspace Analysis Using Random Mixture Models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), pp 574–580

    Google Scholar 

  23. Wang X, Tang X (2006) Random Sampling for Subspace face Recognition. International Journal of Computer Vision, 70(1): 91–104

    Article  Google Scholar 

  24. Chawla N V, Bowye K W (2005) Random Subspaces and Subsampling for 2D face Recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE Computer Society, pp 582–589

    Google Scholar 

  25. Cheng J, Liu Q, Lu H et al (2006) Ensemble Learning for Independent Component Analysis. Pattern Recognition, 39(1): 81–88

    Article  Google Scholar 

  26. Hyvarinen A, Karhunen J, Oja E (2001) Independent Component Analysis. Wiley-Interscience

    Google Scholar 

  27. Basri R, Jacobs D W (2003) Lambertian Reflectance and Linear Subspaces. IEEE Trans Pattern Anal Mach Intell, 25(2): 218–233

    Article  Google Scholar 

  28. Shih F Y, Chuang C F, Wang P S P (2008) Performance Comparisons of Facial Expression Recognition in JAFFE Database. International Journal of Pattern Recognition and Artificial Intelligence, 22(3): 445–459

    Article  Google Scholar 

  29. Luo Y, Gavrilova M L, Wang P S P (2008) Facial Metamorphosis Using Geometrical Methods for Biometric Applications. International Journal of Pattern Recognition and Artificial Intelligence, 22(3): 555–584

    Article  Google Scholar 

  30. Lee S W, Wang P S P, Yanushkevich S N (2008) Noniterative 3D face Reconstruction Based on Photometric Stereo. International Journal of Pattern Recognition and Artificial Intelligence, 22(3): 389–410

    Article  Google Scholar 

  31. Blanz V, Vetter T (2003) Face Recognition Based on Fitting a 3D Morphable Model. IEEE Trans Pattern Anal Mach Intell, 25(9): 1063–1074

    Article  Google Scholar 

  32. Ahonen T, Hadid A, Pietikainen M (2006) Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans Pattern Anal Mach Intell, 28 (12): 2037–2041

    Article  Google Scholar 

  33. Li S Z, Hou X W, Zhang H J et al (2001) Learning Spatially Localized, Parts-based Representation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’01), pp 207–212

    Google Scholar 

  34. Schneiderman H, Kanade T (1998) Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’98), pp 45–51

    Google Scholar 

  35. Zou J, Ji Q, Nagy G (2007) A Comparative Study of Local Matching Approach for Face Recognition. IEEE Trans on Image Processing, 16(10): 2617–2628

    Article  MathSciNet  Google Scholar 

  36. Zhu Y, Liu J, Chen S (2009) Semi-random Subspace Method for face Recognition. Image and Vision Computing, 27(9): 1358–1370

    Article  Google Scholar 

  37. Kuncheva L I, Whitaker C J (2003) Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning, 51(2): 181–207

    Article  MATH  Google Scholar 

  38. Garcia-Pedrajas N, Ortiz-Boyer D (2008) Boosting Random Subspace Method. Neural Networks, 21(9): 1344–1362

    Article  Google Scholar 

  39. Harandi M T, Nili Ahmadabadi M, Araabi B N (2009) Optimal Local Basis: A Reinforcement Learning Approach for face Recognition. International Journal of Computer Vision, 81(2): 191–204

    Article  Google Scholar 

  40. Sutton R S, Barto A G (1998) Introduction to Reinforcement Learning. MIT Press, Massachusetts

    Google Scholar 

  41. Bailly-Bailliére E, Bengio S, Bimbot F et al (2003) The BANCA Database and Evaluation Protocol. In: Kittler J, Nixon M (eds) Audio-and Video-Based Biometric Person Authentication, vol 2688. Lecture Notes in Computer Science. Springer, Heidelberg, pp 1057

    Google Scholar 

  42. Turk M, Pentland A (1991) Eigenfaces for Recognition. J Cognitive Neuroscience, 3(1): 71–86

    Article  Google Scholar 

  43. Belhumeur P N, Hespanha J P, Kriegman D J (1997) Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans Pattern Anal Mach Intell, 19(7): 711–720

    Article  Google Scholar 

  44. Freund Y, Schapire R (1995) A Desicion-theoretic Generalization of on-line Learning and an Application to Boosting. In: Vitányi P (ed) Computational Learning Theory, vol 904. Lecture Notes in Computer Science. Springer, Heidelberg, pp 23–37

    Google Scholar 

  45. Viola P, Jones M J (2004) Robust Real-Time Face Detection. International Journal of Computer Vision, 57(2): 137–154

    Article  Google Scholar 

  46. Blum A L, Langley P (1997) Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence, 97(1–2): 245–271

    Article  MathSciNet  MATH  Google Scholar 

  47. Guyon I, Elisseeff A (2003) An introduction to Variable and Feature Selection. Journal of Machine Learning Research, 3: 1157–1182

    MATH  Google Scholar 

  48. Tieu K, Viola P (2000) Boosting Image Retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’00), pp 228–235

    Google Scholar 

  49. Lienhart R, Maydt J (2002) An Extended set of Haar-like Features for Rapid Object Detection. In: International Conference on Image Processing (ICIP’02). pp 900–903

    Google Scholar 

  50. Yang P, Shan S, Gao W et al (2004) Face Recognition Using Ada-Boosted Gabor Features. In: IEEE International Conference on Automatic Face and Gesture Recognition (FG’04), pp 356–361

    Google Scholar 

  51. Opelt A, Pinz A, Fussenegger M et al (2006) Generic Object Recognition With Boosting. IEEE Trans Pattern Anal Mach Intell, 28(3): 416–431

    Article  Google Scholar 

  52. Yamaguchi O, Fukui K, Maeda K (1998) Face Recognition Using Temporal Image Sequence. In: International Conference on Face and Gesture Recognition (FG’98). pp 318–323

    Google Scholar 

  53. Hamm J, Lee D D (2008) Grassmann Discriminant Analysis: a Unifying View on Subspace-based Learning. In: International Conference on Machine Learning (ICML’08), Helsinki, Finland. ACM, pp 376–383

    Google Scholar 

  54. Wang T, Shi P (2009) Kernel Grassmannian Distances and Discriminant Analysis for face Recognition from image sets. Pattern Recogn Lett, 30(13): 1161–1165

    Article  Google Scholar 

  55. Kim T K, Kittler J, Cipolla R (2007a) Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations. IEEE Trans Pattern Anal Mach Intell, 29(6): 1005–1018

    Article  Google Scholar 

  56. Wang R, Shan S, Chen X et al (2008) Manifold-manifold Distance with Application to Face Recognition Based on Image set. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08), pp 1–8

    Google Scholar 

  57. Harandi M T, Bigdeli A, Lovell B C (2010b) Image-set Face Recognition Based on Transductive Learning. In: International Conference on Image Processing (ICIP’10) Hong Kong, 2010, pp 2425–2428

    Google Scholar 

  58. Kim T K, Arandjelovic O, Cipolla R (2007b) Boosted Manifold Principal Angles For Image Set-based Recognition. Pattern Recognition, 40(9): 2475–2484

    Article  MATH  Google Scholar 

  59. Maeda K I, Yamaguchi O, Fukui K (2004) Towards 3-dimensional Pattern Recognition. In: Fred A, Caelli T, Duin RPW, Campilho A, Ridder Dd (eds) Structural, Syntactic, and Statistical Pattern Recognition, vol 3138. Lecture Notes in Computer Science. Springer, Heidelberg, pp 1061–1068

    Chapter  Google Scholar 

  60. Comaniciu D, Ramesh V, Meer P (2003) Kernel-Based Object Tracking. IEEE Trans Pattern Anal Mach Intell, 25(5): 564–575

    Article  Google Scholar 

  61. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell, 29(2): 261–271

    Article  Google Scholar 

  62. Bordes A, Ertekin S, Weston J et al (2005) Fast Kernel Classifiers With Online and Active Learning. Journal of Machine Learning Research, 6

    Google Scholar 

  63. Kivinen J, Smola A J, Williamson R C (2004) Online Learning with Kernels. IEEE Trans on Signal Processing, 52(8): 2165–2176

    Article  MathSciNet  Google Scholar 

  64. Li Y, Long P M (2002) The Relaxed Online Maximum Margin Algorithm. Machine Learning, 46(1–3): 361–387

    Article  MATH  Google Scholar 

  65. Grabner H, Bischof H (2006) On-line Boosting and Vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’06), 17-22 June 2006: 260–267

    Google Scholar 

  66. Nguyen T T, Binh N D, Bischof H (2008) An Active Boosting-based Learning Framework for Real-time Hand Detection. In: International Conference on Automatic Face Gesture Recognition (FG’08), pp 1–6

    Google Scholar 

  67. Chang W C, Cho C W (2010) Online Boosting for Vehicle Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(3): 892–902

    Article  Google Scholar 

  68. Huang C, Ai H, Yamashita T et al (2007) Incremental Learning of Boosted Face Detector. In: International Conference on Computer Vision (ICCV’07), pp 1–8

    Google Scholar 

  69. Masip D, Lapedriza Á, Vitrià J (2009) Boosted Online Learning for Face Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(2): 530–538

    Article  Google Scholar 

  70. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line Boosting for Robust Tracking. In: European Conference on Computer Vision, Marseille, France, 2008. Springer, pp 234–247

    Google Scholar 

  71. Binh N D, Nguyen T T, Bischof H (2008) On-line Boosting Learning for Hand Tracking and Recognition. In: International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV’08), pp 345–351

    Google Scholar 

  72. Liu X, Yu T (2007) Gradient Feature Selection for Online Boosting. In: International Conference on Computer Vision (ICCV’07), pp 1–8

    Google Scholar 

  73. Jiang W, Er G, Dai Q et al (2006) Similarity-based Online Feature Selection in Content-based Image Retrieval. IEEE Trans on Image Processing, 15(3): 702–712

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harandi, M., Taheri, J., Lovell, B.C. (2011). Ensemble Learning for Object Recognition and Tracking. In: Wang, P.S.P. (eds) Pattern Recognition, Machine Intelligence and Biometrics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22407-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22407-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22406-5

  • Online ISBN: 978-3-642-22407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics