Skip to main content

An Oblique Derivative in the Direct BEM Formulation of the Fixed Gravimetric BVP

  • Conference paper
  • First Online:
VII Hotine-Marussi Symposium on Mathematical Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 137))

Abstract

The fixed gravimetric boundary-value problem (FGBVP) represents an exterior oblique derivative problem for the Laplace equation. The boundary element method and the collocation with linear basis functions are used to get a numerical solution of FGBVP in which the oblique derivative is treated by its decomposition into normal and tangential components to the Earth’s surface. The tangential components are expressed through the gradients of the linear basis functions.This new numerical approach to the solution of FGBVP is applied to global gravity field modelling. Input surface gravity disturbances as the oblique derivative boundary conditions are generated from the DNSC08 gravity field model. The obtained numerical solution with the resolution of 0.1 is compared with the EGM2008 geopotential model at collocation points. A contribution of the tangential components to the solution is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OB, Knudsen P, Berry P (2008) The DNSC08 ocean wide altimetry derived gravity field. Presented at EGU-2008, Vienna, Austria, April 2008

    Google Scholar 

  • Aoyama Y, Nakano J (1999) RS/6000 SP: Practical MPI programming. IBM, Poughkeepsie

    Google Scholar 

  • Balaš J, Sládek J, Sládek V (1989) Stress analysis by boundary element methods. Elsevier, Amsterdam

    Google Scholar 

  • Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, Van der Vorst H (1994) Templates for the solution of linear systems: Building blocks for iterative methods. http://www.netlib.org/templates/Templates.html

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Sharman G, Trimmer R, vonRosenburg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS, revised for Marine Geodesy

    Google Scholar 

  • Bjerhammar A, Svensson L (1983) On the geodetic boundary-value problem for a fixed boundary surface – satellite approach. Bull Géodes 57:382–393

    Article  Google Scholar 

  • Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques, theory and applications in engineering. Springer, New York

    Google Scholar 

  • Čunderlík R, Mikula K, Mojzeš M (2002) 3D BEM application to Neumann geodetic BVP using the collocation with linear basis functions. In: Proceedings of ALGORITMY 2002, conference on scientific computing, Podbanské: 268–275

    Google Scholar 

  • Čunderlík R, Mikula K, Mojzeš M (2008) Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geodes 82:15–29

    Article  Google Scholar 

  • Čunderlík R, Mikula K (2010) Direct BEM for high-resolution gravity field modeling. Stud Geophys Geodes, Vol. 54, No. 2, pp. 219–238

    Article  Google Scholar 

  • Grafarend EW (1989) The geoid and the gravimetric boundary-value problem. Rep 18 Dept Geod, The Royal Institute of Technology, Stockholm

    Google Scholar 

  • Koch KR, Pope AJ (1972) Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull Géod 46:467–476

    Article  Google Scholar 

  • Mayer-Gürr T (2007) ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn. Presentation at GSTM+SPP, Potsdam, 15–17 Oct 2007

    Google Scholar 

  • Nesvadba O, Holota P, Klees R (2007) A direct method and its numerical interpretation in the determination of the Earth’s gravity field from terrestrial data. In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia, vol 130, Springer, New York, pp 370–376

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2,160: EGM2008, presented at the 2008 General Assembly of EGU, Vienna, Austria, April 13–18, 2008

    Google Scholar 

  • Schatz AH, Thomée V, Wendland WL (1990) Mathematical theory of finite and boundary element methods. Birkhäuser, Basel

    Book  Google Scholar 

Download references

Acknowledgements

Authors gratefully thank to the financial support given by grants: VEGA 1/0269/09, APVV-LPP-0216–06 and APVV-0351–07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Čunderlı́k .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Čunderlı́k, R., Mikula, K., Špir, R. (2012). An Oblique Derivative in the Direct BEM Formulation of the Fixed Gravimetric BVP. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds) VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_34

Download citation

Publish with us

Policies and ethics