Skip to main content

Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

This paper extends and improves work of Fortnow and Klivans [5], who showed that if a circuit class \(\mathcal{C}\) has an efficient learning algorithm in Angluin’s model of exact learning via equivalence and membership queries [2], then we have the lower bound EXP NP \(\not\subseteq \mathcal{C}\). We use entirely different techniques involving betting games [4] to remove the NP oracle and improve the lower bound to EXP \(\not\subseteq \mathcal{C}\). This shows that it is even more difficult to design a learning algorithm for \(\mathcal{C}\) than the results of Fortnow and Klivans indicated.

This research was supported in part by NSF grants 0652601 and 0917417 and by an NWO travel grant. Part of this research was done while Hitchcock was on sabbatical at CWI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenstein, H., Hegedüs, T., Hellerstein, L., Pitt, L.: Complexity theoretic hardness results for query learning. Computational Complexity 7, 19–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)

    MathSciNet  Google Scholar 

  3. Buhrman, H., Homer, S.: Superpolynomial circuits, almost sparse oracles and the exponential hierarchy. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 116–127. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  4. Buhrman, H., van Melkebeek, D., Regan, K.W., Sivakumar, D., Strauss, M.: A generalization of resource-bounded measure, with application to the BPP vs. EXP problem. SIAM Journal on Computing 30(2), 576–601 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fortnow, L., Klivans, A.R.: Efficient learning algorithms yield circuit lower bounds. Journal of Computer and System Sciences 75(1), 27–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hitchcock, J.M.: Online learning and resource-bounded dimension: Winnow yields new lower bounds for hard sets. SIAM Journal on Computing 36(6), 1696–1708 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity classes. In: Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pp. 302–309 (1980)

    Google Scholar 

  8. Kearns, M., Valiant, L.: Cryptographic limitations on learning Boolean formulae and finite automata. J. ACM 41(1), 67–95 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kharitonov, M.: Cryptographic lower bounds for learnability of Boolean functions on the uniform distribution. J. of Comput. Syst. Sci. 50(3), 600–610 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lindner, W., Schuler, R., Watanabe, O.: Resource-bounded measure and learnability. Theory of Computing Systems 33(2), 151–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning 2(4), 285–318 (1988)

    Google Scholar 

  12. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44(2), 220–258 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Merkle, W., Miller, J., Nies, A., Reimann, J., Stephan, F.: Kolmogorov-Loveland Randomness and Stochasticity. Annals of Pure and Applied Logic 138(1-3), 183–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muchnik, A.A., Semenov, A.L., Uspensky, V.A.: Mathematical metaphysics of randomness. Theoretical Computer Science 207(2), 263–317 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Toda, S.: On the computational power of PP and ⊕P. SIAM Journal on Computing 20(5), 865–877 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harkins, R.C., Hitchcock, J.M. (2011). Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics