Skip to main content

Voting in Multi-Agent System for Improvement of Partial Observations

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2011)

Abstract

In this paper a system for monitoring a biotechnical system is presented. Some of the events associated with the state of metabolic reactions are indistinguishable, mainly due to lack of appropriate sensors and measurement capabilities. Therefore, a solution is needed to identify the state in which the reactor currently is, based on the information and measurements available in real time. The solution presented in this paper is based on a multi agent system, in which particular agents identify the state of the process based on selected measurements. Those partial identification results are than used to provide a cumulative result by means of a voting mechanism between all the particular agents. Such a solution seems to be a promising alternative to standard monitoring and identification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Development. In: Autonomous Agents and Multi–Agent Systems, vol. 1, pp. 7–38. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  2. Weiss, G. (ed.): MultiAgent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  4. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis. University of Cambridge, England (1989)

    Google Scholar 

  5. Watkins, C.J.C.H., Dayan, P.: Technical note: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

  6. Cassandras, C.G., Lafortune, S.: Introduction to discrete event system. Springer, New York (2008)

    Book  MATH  Google Scholar 

  7. Werbos, P.J.: Approximate dynamic programming for real-time control and neural modeling. In: Handbook of Intelligent Control. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  8. Kim, J.-H., Lewis, F.L.: Model-free H ∞ control design for unknown linear discrete-time systems via Q-learning with LMI. Automatica 46, 1320–1326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Murakoshi, K., Mizuno, J.: A parameter control method in reinforcement learning to rapidly follow unexpected environmental changes. BioSystems 77, 109–117 (2004)

    Article  Google Scholar 

  10. Croll, P.R., Sharkey, A.J.C., Bass, J.M., Sharkey, N.E., Fleming, P.J.: Dependable, Intelligent Voting for Real-time Control Software. Engng. Applic. Artif. Intell. 8, 615–623 (1995)

    Article  Google Scholar 

  11. Latif-Shabgahi, G., Bennet, S., Bass, J.M.: Smoothing voter: a novel voting algorithm for handling multiple errors in fault-tolerant control systems. Microprocessors and Microsystems 27, 303–313 (2003)

    Article  Google Scholar 

  12. Conitzer, V.: Comparing multiagent systems research in combinatorial auctions and voting. Ann. Math. Artif. Intell. 58, 239–259 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong, J., Prabhu, V.V.: Distributed Reinforcement Learning Control for Batch Sequencing and Sizing in Just-In-Time Manufacturing Systems. Applied Intelligence 20, 71–87 (2004)

    Article  Google Scholar 

  14. Ohshita, T., Shin, J.-S., Miyazaki, M., Lee, H.-H.: A cooperative behavior learning control of multi-robot using trace information. Artif. Life Robotics 13, 144–147 (2008)

    Article  Google Scholar 

  15. Park, K.-H., Kim, Y.-J., Kim, J.-H.: Modular Q-learning based multi-agent cooperation for robot soccer. Robotics and Autonomous Systems 35, 109–122 (2001)

    Article  MATH  Google Scholar 

  16. Distante, C., Anglani, A., Taurisano, F.: Target Reaching by Using Visual Information and Q-learning Controllers. Autonomous Robots 9, 41–50 (2000)

    Article  Google Scholar 

  17. Kirchner, F.: Q-learning of complex behaviours on a six-legged walking machine. Robotics and Autonomous Systems 25, 253–262 (1998)

    Article  Google Scholar 

  18. Rahimiyan, M., Mashhadi, M.R.: Supplier’s optimal bidding strategy in electricity pay-as-bid auction: Comparison of the Q-learning and a model-based approach. Electric Power Systems Research 78, 165–175 (2008)

    Article  Google Scholar 

  19. Tillotson, P.R.J., Wu, Q.H., Hughes, P.M.: Multi-agent learning for routing control within an Internet environment. Engineering Applications of Artificial Intelligence 17, 179–185 (2004)

    Article  MATH  Google Scholar 

  20. Syafiie, S., Tadeo, F., Martinez, E.: Model-free learning control of neutralization processes using reinforcement learning. Engineering Applications of Artificial Intelligence 20, 767–782 (2007)

    Article  Google Scholar 

  21. Wilson, J.A., Martinez, E.C.: Neuro-fuzzy modeling and control of a batch process involving simultaneous reaction and distillation. Computers Chem. Engng. 21, S1233–S1238 (1997)

    Article  Google Scholar 

  22. Momot, A., Małysiak-Mrozek, B.z., Kozielski, S., Mrozek, D., Hera, Ł., Górczyńska-Kosiorz, S., Momot, M.: Improving Performance of Protein Structure Similarity Searching by Distributing Computations in Hierarchical Multi-Agent System. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, vol. 6421, pp. 320–329. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Choiński, D., Metzger, M., Nocoń, W.: Multiscale three-phase flow simulation dedicated to model based control. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102, pp. 261–270. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Nocoń, W., Metzger, M.: Predictive Control of Decantation in Batch Sedimentation Process. AICHE Journal 56, 3279–3283 (2010)

    Article  Google Scholar 

  25. Ni, B.-J., Fanf, F., Rittmann, B.E., Yu, H.-Q.: Modeling Microbial Products in Activated Sludge under Feast-Famine Conditions. Environ. Sci. Technol. 43, 2489–2497 (2009)

    Article  Google Scholar 

  26. Cassandras, C.G., Lafortune, S.: Introduction to discrete event system. Springer, New York (2008)

    Book  MATH  Google Scholar 

  27. Partalas, I., Feneris, I., Vlahavas, I.: Multi-Agent Reinforcement Learning using Strategies and Voting. In: 19th IEEE International Conference on Tools with Artificial Intelligence, pp. 318–324 (2007)

    Google Scholar 

  28. Gołacki, M., Koźlak, J., Żabińska, M.: Holonic-Based Environment for Solving Transportation Problems. In: Mařík, V., Strasser, T., Zoitl, A. (eds.) HoloMAS 2009. LNCS, vol. 5696, pp. 193–202. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  29. Metzger, M., Choinski, D., Nocon, W.: Pilot switcheable SBR and SOCP processes for biological wastewater treatment. Activity Report – Institute of Automatic Control, Gliwice (2010)

    Google Scholar 

  30. National Instruments documentation, Using the LabVIEW Shared Variable, http://zone.ni.com/devzone/cda/tut/p/id/4679

  31. Nocoń, W.: Requirement Specification for Agent-Based Cooperative Control of Dynamical Systems. In: Luo, Y. (ed.) CDVE 2010. LNCS, vol. 6240, pp. 270–277. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choinski, D., Metzger, M., Nocon, W. (2011). Voting in Multi-Agent System for Improvement of Partial Observations. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2011. Lecture Notes in Computer Science(), vol 6682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22000-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22000-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21999-3

  • Online ISBN: 978-3-642-22000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics