Skip to main content

Dynamic Classification of Cellular Transmural TransMembrane Potential (TMP) Activity of the Heart

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

  • 1687 Accesses

Abstract

Understanding the transmembrane potential (TMP) dynamics of the heart provides an essential guidance to the diagnoses and treatment of cardiac arrhythmias. Most existing methods analyze and classify the TMP signal globally depending on extracting silent features such as the activation time. In consequence, these methods can not characterize the dysfunctions of each cardiac cell dynamically. In order to assess the electrophysiology of the heart considering pathological conditions of each cardiac cell over time, one should analyze and classify the TMP behavior that is differentially expressed in a particular set of time. In this paper, we utilize a spectral co-clustering algorithm to disclose the abnormality of the TMP dynamics over a time sequence. This algorithm is based on the observation that the embedding spectrum structures in the TMP dynamics matrices can be found in their eigenvectors through singular value decomposition (SVD). These eigenvectors correspond to the characteristic patterns across cardiac cells or time sequence. To demonstrate the reliability of this approach, our experimental results show great agreement with the ground truth of the simulated data sets that enable efficient use of this scheme for revealing abnormal behavior in TMP dynamics, at the presence of added Gaussian noise to the simulated TMP dynamics. Furthermore, we compare our results against the k-means clustering algorithm outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, L., Wong, K., Zhang, H., Liu, H., Shi, P.: Noninvasive Computational Imaging of Cardiac Electrophysiology for 3D Infarct Quantitation. IEEE Transactions on Biomed. Eng. 13 (December 2010)

    Google Scholar 

  2. Wang, L., Zhang, H., Wong, K., Liu, H., Shi, P.: Physiological Model Constrained Noninvasive Reconstruction of Volumetric Myocardial Transmembrane Potentials. IEEE Transactions on Biomedical Engineering 57(2) (February 2010)

    Google Scholar 

  3. Relan, J., Pop, M., Delingette, H., Wright, G.A., Ayache, N., Sermesant, M.: Estimation of Reaction, Diffusion and Restitution Parameters for a 3D Myocardial Model Using Optical Mapping and MRI. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 270–280. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Relan, J., Sermesant, M., Pop, M., Delingette, H., Sorine, M., Wright, G.A., Ayache, N.: Volumetric Prediction of Cardiac Electrophysiology using a Heart Model Personalized to Surface Data. In: MICCAI Workshop, pp. 19–27 (2009)

    Google Scholar 

  5. Miller III, W.T., Geselowitz, D.B.: Simulation Studies of the Electrocardiogram; II. Ischemia and Infarction. J. ACM. Circ. Res. 43(2), 315–323 (1978)

    Article  Google Scholar 

  6. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the the Seventh ACM SIGKDD (2001)

    Google Scholar 

  7. Weiling, M., Nerboone, J.: Bipartite spectral graph partitioning to co-cluster varieties and sound correspondence in dialectology. In: Choudhuri, M. (ed.) Proc. Workshop on Graph-based Methods for Natural Lang. Processing, pp. 26–34 (2009)

    Google Scholar 

  8. Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray data: co-clustering genes and conditions. Genome Research 13, 703–716 (2003)

    Article  Google Scholar 

  9. Kardesch, M., Hogancamp, C.E., Bing, R.J.: The effect of complete ischemia on the intracellular electrical activity of the whole mammalian heart. Circ. Res. 6, 715–720 (1958)

    Article  Google Scholar 

  10. Samson, W.E., Scher, A.M.: Mechanism of S-T segment alteration during acute myocardial injury. Circ. Res. 8, 780–787 (1960)

    Article  Google Scholar 

  11. Spach, M.S., Barr, R.C., Lanning, C.F., Tucek, P.C.: Origin of body surface QRS and T-wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation 55, 268–278 (1977)

    Article  Google Scholar 

  12. Ramanathan, C., Jia, P., Ghanem, R., Ryu, K., Rudy, Y.: Activation and repolarization of the normal human heart under complete physiological conditions. PNAS 103(16), 6309–6314 (2006)

    Article  Google Scholar 

  13. Janse, M.J., Wit, A.L.: Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardium ischemia and infarction. Physiol. Rev. 69, 1049–1169 (1989)

    Google Scholar 

  14. Taccardi, B.: Distribution of heart potentials on the thoracic surface of normal human subjects. Circ. Res. 12, 341 (1963)

    Article  Google Scholar 

  15. Chung, F.: Spectral Graph Theory. American Mathematical Society Press, Providence (1997)

    MATH  Google Scholar 

  16. Nash, M.: Mechanics and material properties of the heart using an anatomically accurate mathematical model. Ph.D. dissertation, Univ. of Auckland (May 1998)

    Google Scholar 

  17. Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105, 539–542 (2002)

    Article  Google Scholar 

  18. Shuros, A.C., Salo, R.W., Florea, V.G., Pastore, J., Kuskowski, M.A., Chandrashekhar, Y., Anand, I.S.: Ventricular Preexcitation Modulates Strain and Attenuates Cardiac Remodeling in a Swine Model of Myocardial Infarction. Circ. Res. 116, 1162–1169 (2007)

    Article  Google Scholar 

  19. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitions and Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elshrif, M., Wang, L., Shi, P. (2011). Dynamic Classification of Cellular Transmural TransMembrane Potential (TMP) Activity of the Heart. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics