Skip to main content

Estimation of Reaction, Diffusion and Restitution Parameters for a 3D Myocardial Model Using Optical Mapping and MRI

  • Conference paper
Statistical Atlases and Computational Models of the Heart (STACOM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6364))

Abstract

Personalisation, i.e. parameter estimation of a cardiac ElectroPhysiology (EP) model is needed to build patient-specific models, which could then be used to understand the true complex dynamics involved in patient’s pathology. In this paper, we present a personalisation method for a simplified ionic 3D EP model, the Mitchell-Schaeffer model. The personalisation is performed by optimising the 3D model parameters, which represent the tissue conductivity, Action Potential Duration (APD) and restitution for APD and conduction velocity, using only 2D epicardial surface data obtained ex-vivo from optical imaging of large porcine healthy hearts. We are also able to estimate all of the model parameters, thus resulting in a total heart-specific 3D EP model. Finally, we also test the sensitivity of the described personalisation results with respect to different pacing locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aliot, E., Stevenson, W., Almendral-Garrote, J.: Ehra/hrs expert consensus on catheter ablation of ventricular arrhythmias. Europace 11, 771–817 (2009)

    Article  Google Scholar 

  2. Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. Physiology 160, 317–352 (1962)

    Google Scholar 

  3. Sermesant, M., Konukoglu, E., Delingette, H., Coudiere, Y., Chinchaptanam, P., Rhode, K., Razavi, R., Ayache, N.: An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology. In: Sachse, F.B., Seemann, G. (eds.) FIHM 2007. LNCS, vol. 4466, pp. 160–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  5. Mitchell, C.C., Schaeffer, D.G.: A two current model for the dynamics of cardiac membrane. B. of Mathematical Biology 65, 767–793 (2003)

    Article  Google Scholar 

  6. Lepiller, D., Sermesant, M., Pop, M., Delingette, H., Wright, G.A., Ayache, N.: Cardiac electrophysiology model adjustment using fusion of mr and optical imaging. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 678–685. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Relan, J., Sermesant, M., Delingette, H., Pop, M., Wright, G.A., Ayache, N.: Quantitative comparison of two cardiac electrophysiology models using personalisation to optical and mr data. In: ISBI, pp. 1027–1030 (2009)

    Google Scholar 

  8. Relan, J., Sermesant, M., Pop, M., Delingette, H., Sorine, M., Wright, G., Ayache, N.: Parameter estimation of a 3d cardiac electrophysiology model including the restitution curve using optical and mr data. In: IFMBE Proceedings of World Congress on Medical Physics and Biomedical Engineering, pp. 1716–1719 (2009)

    Google Scholar 

  9. Relan, J., Sermesant, M., Pop, M., Delingette, H., Sorine, M., Wright, G., Ayache, N.: Volumetric prediction of cardiac electrophysiology using a heart model personalised to surface data. In: MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling - CI2BM 2009, pp. 19–27 (2009)

    Google Scholar 

  10. Ethier, M., Bourgault, Y.: Semi-implicit time discretization schemes for the bidomain model. Siam J. Numer. Anal. 46(5), 2443–2468 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pop, M., Sermesant, M., Lepiller, D., Truong, M.V., McVeigh, E.R., Crystal, E., Dick, A., Delingette, H., Ayache, N., Wright, G.A.: Fusion of optical imaging and mri for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: A feasibility study. Med. Image Anal. (July 2008)

    Google Scholar 

  12. Conn, A.R., Gould, N.I.M., Toint, P.: Trust Region Methods. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Relan, J., Pop, M., Delingette, H., Wright, G.A., Ayache, N., Sermesant, M. (2010). Estimation of Reaction, Diffusion and Restitution Parameters for a 3D Myocardial Model Using Optical Mapping and MRI. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. STACOM 2010. Lecture Notes in Computer Science, vol 6364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15835-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15835-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15834-6

  • Online ISBN: 978-3-642-15835-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics