Skip to main content

Biology of Eukaryotic Probiotics

  • Chapter
  • First Online:
Probiotics

Part of the book series: Microbiology Monographs ((MICROMONO,volume 21))

Abstract

Probiotics are viable microorganisms which upon ingestion confer health benefits to the host. Any microorganism irrespective of its origin, capable of surviving in the digestive tract of host and exerting such effects can be a candidate. Most of the currently used probiotics belong to prokaryotic origin. Unlike prokaryotes, several eukaryotic microorganisms can also be very useful to animal’s health. Since a long time, eukaryotes are used as single cell protein and/or as components of food starters for human and animal consumption throughout the world. Apart from these uses, certain eukaryotic microorganisms are also used as probiotics since they can withstand the harsh milieu of gut and execute beneficial effects in host. While bacterial probiotics are common, only limited eukaryotic probiotics belonging to fungi/moulds/yeasts are used in human and animal practices. Nowadays interest in eukaryotic probiotics is on the rise and in most of the cases, their efficacy and usefulness has been confirmed by firm scientific evidences. Among the eukaryotic probiotics, yeasts especially Saccharomyces species are dominant and routinely used in a broad range of hosts. This chapter deals with the occurrence, distribution, taxonomic characterization, and detail modes of action of eukaryotic probiotics with special reference to yeasts in human and other animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abosereh NA, Mohamed HAA, El-Chalk ABA (2007) Genetic construction of potentially probiotic Saccharomyces boulardii yeast strains using intraspecific protoplast fusion. J Appl Sci Res 3(3):209–217

    CAS  Google Scholar 

  • Al-Kassie GAM, Al-Jumaa YMF, Jameel YJ (2008) Effect of Probiotic (Aspergillus niger) and Prebiotic (Taraxacum officinale) on Blood Picture and Biochemical Properties of Broiler Chicks. Int J Poult Sci 7(12):1182–1184

    Article  CAS  Google Scholar 

  • Aloysins L, Souza D, Rajkumar C, Cooke J, Bulpitt CJ (2005) Probiotic in prevention of antibiotic associated diarrhea. British Med J 8:1–6

    Google Scholar 

  • Arambel MJ, Kent BA (1990) Effect of yeast culture on nutrient digestibility and milk yield response in early- to midlactation dairy cows. J Dairy Sci 73:1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Balasundram D, Jonathan DD, Celia WT, Tabor H (1994) SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J Bacteriol 176(22):7126–7128

    Google Scholar 

  • Baleiras Couto MM, Eijsma B, Hofstra H, JH Huis in’t Veld, van der Vossen JM (1996) Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Appl Env Microbiol 62:41–46

    CAS  Google Scholar 

  • Blehaut H, Massot J, Elmer GW, Levy RH (1989) Disposition kinetics of Saccharomyces boulardii in man and rat. Biopharm Drug Dispos 10:353–364

    Article  PubMed  CAS  Google Scholar 

  • Bleichner G, Blehaut H, Mentec H, Moyse D (1997) Saccharomyces boulardii prevents diarrhea in critically ill tube-fed patients. A multicenter, randomized, double-blind placebo-controlled trial. Intens Care Med 23:517–523

    Article  CAS  Google Scholar 

  • Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3 phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092

    PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microbiol Physiol 33:145–212

    Article  CAS  Google Scholar 

  • Bovill R, Bew J, Robinson S (2001) Comparison of selective media for the recovery and enumeration of probiotic yeasts from animal feed. Int J Food Microbiol 67:55–61

    Article  PubMed  CAS  Google Scholar 

  • Boyle RJ, Roy MRB, Tang ML (2006) Probiotic use in clinical practice: what are the risks? American J Clin Nutri 83:1256–1264

    CAS  Google Scholar 

  • Brandao RL, Castro IM, Bambirra EA, Amaral SC, Fietto LG, Tropia MJM, Neves MJ, Santos RG, Gomes NCM, Nicoli JR (1998) Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Appl Environ Microbiol 64:564–568

    PubMed  CAS  Google Scholar 

  • Buchl NR, Hutzler M, Mietke-Hofmann H, Wenning M, Scherer S (2010) Differentiation of probiotic and environmental Saccharomyces cerevisiae strains in animal feed. J Appl Microbiol 109(3):783–791

    Article  PubMed  CAS  Google Scholar 

  • Buts JP (2009) Twenty-five years of research on Saccharomyces boulardii trophic effects: updates and perspectives. Dig Dis Sci 54:15–18

    Article  PubMed  Google Scholar 

  • Buts JP, Bernasconi P, Van Craynest MP, Maldague P, De Meyer R (1986) Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr Res 20:192–196

    Article  PubMed  CAS  Google Scholar 

  • Buts JP, Bernasconi P, Vaerman JP, Dive C (1990) Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig Dis Sci 35:251–256

    Article  PubMed  CAS  Google Scholar 

  • Buts JP, De Keyser N, De Raedemaeker L (1994) Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr Res 36:522–527

    Article  PubMed  CAS  Google Scholar 

  • Cartwright-Shamoon J, Dickson GR, Dodge J, Carr KE (1996) Uptake of yeast (Saccharomyces boulardii) in normal and rotavirus treated intestine. Gut 39:204–209

    Article  PubMed  CAS  Google Scholar 

  • Cassone M, Serra P, Mondello F, Girolamo A, Scaletti S, Pastella E, Venditti M (2003) Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol 41:5340–5343

    Article  PubMed  Google Scholar 

  • Castagliuolo I, Lamount JT, Nikulasson ST, Pathoulakis C (1996) Saccharomyces boulardii protease inhibits Clostridium difficle toixin: an effect in the rat ileum. Infect Immun 64:5225–5232

    PubMed  CAS  Google Scholar 

  • Castagliulo I, Riegler MF, Valenick L, LaMont JT, Pothoulakis C (1999) Saccharomyces boulardii protease mediates Clostridium difficile toxin A ad B effects in human colonic mucosa. Infect Immun 67:302–307

    Google Scholar 

  • Cesaro S, Chinello P, Rossi L, Zanesco L (2000) Saccharomyces cerevisiae fungemia in a neutropenic patient treated with Saccharomyces boulardii. Support Care Cancer 8(6):504–505

    Article  PubMed  CAS  Google Scholar 

  • Cetina SG, Sierra BG (1994) Evaluation thérapeutique de Saccharomyces boulardii chez des enfants souffrant de diarrhee aigue. Annales de Pediatrie (Paris) 41:397–400

    Google Scholar 

  • Chaucheyras F, Fonty G, Bertin G, Gouet P (1995) Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth and cellulolytic activity of the rumen anaerobic fungus Neocallimastix frontalis NCH3. Curr Microbiol 31:201–205

    Article  PubMed  CAS  Google Scholar 

  • Chaucheyras F, Fonty G, Bertin G, Salmon JM, Gouet P (1996) Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Canadian J Microbiol 42:927–933

    Article  CAS  Google Scholar 

  • Chaucheyras F, Millet L, Michalet-Doreau B (1997) Effect of the addition of Levucell Saccharomyces cerevisiae on the rumen microflora of sheep during adaptation to high starch diets. In: Chesson A, Stewart CS, Flint HJ (eds) Proceedings of evolution of the rumen microbial ecosystem, RRI-INRA Rumen microbiologu Symposium, 20–21 Mar 1997, Aberdeen, UK

    Google Scholar 

  • Chaucheyras F, Fonty G, Bertin G, Theveniot M, Gouet P (1998) Fate of Levucell SCI-1077 yeast additive during digestive transit in lambs. Reprod Nutr Dev 38:275–280

    Article  Google Scholar 

  • Chen LS, MA Y, Maubois JL, Chen LJ, Liu QH, Guo JP (2010) Identification of yeasts from raw milk and selection for some specific antioxidant properties. Int J Dairy Tech 63(1):47–54

    Article  CAS  Google Scholar 

  • Chi ZM, Liu G, Zhao S, Li J, Peng Y (2010) Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol 86:1227–1241

    Article  PubMed  CAS  Google Scholar 

  • Churchil R, Mohan B (2000) Effect of supplementation of broiler rations with live yeast culture. Cheiron 29(1–2):23–27

    Google Scholar 

  • Corthier G, Dubos F, Ducluzeau R (1986) Prevention of Clostridium difficile induced mortality in gnotobiotic mice by Saccharomyces boulardii. Canadian J Microbiol 32:894–896

    Article  CAS  Google Scholar 

  • Cuaron P (1999) Live yeast use in growing and finishing swine. Development of a study model. In: Proceedings of the 3rd SAF-AGRI Symposium on biotechnology applied to animal nutrition, Merida, Mexico

    Google Scholar 

  • Czerucka D, Rampal P (1999) Effect of Saccharomyces boulardii on cAMP and Ca2- dependent Cl secretion in T84 cells. Dig Dis Sci 44:2359–2368

    Article  PubMed  CAS  Google Scholar 

  • Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P (2000) Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli infected T84 cells. Infect Immun 68:5998–6004

    Article  PubMed  CAS  Google Scholar 

  • Czerucka D, Rampal P (2002) Experimental effects of Saccharomyces on diarrhoeal pathogens. Microbes Infect 4:733–739

    Article  PubMed  Google Scholar 

  • Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics – Saccharomyces boulardii. Aliment Pharmacol Ther 26:767–778

    Article  PubMed  CAS  Google Scholar 

  • Dalmasso G, Cottrez F, Imbert V, Lagadec P, Peyron JF, Rampal P, Czerucka D, Groux H (2006) Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology 131:1812–1825

    Article  PubMed  CAS  Google Scholar 

  • Dann HM, Prockley JR, McCoy GC, Hutjens MF, Garret JE (2000) Effects of yeast cultures (Saccharomyces cerevisiae) on prepartum intake and postpartum intake and milk production of Jersey cows. J Dairy Sci 83:123–127

    Article  PubMed  CAS  Google Scholar 

  • de Virgillio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186

    Article  Google Scholar 

  • Diniz RO, Garla LK, Schneedorf JM, Carvalho JCT (2003) Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacol Res 47:49–52

    Article  PubMed  CAS  Google Scholar 

  • Dixit K, Gandhi DN (2010) Biotherapeutic properties of probiotic yeast Saccharomyces species in fermented dairy foods. Available from URL: http://www.dairyscience.info/probiotics/105-biotherapeutic-probioticyeast. Accessed 16 Apr 2010

  • Dizaji SB, Pirmohammadi R (2009) Effect of Saccharomyces cerevisiae and Bioplus 2B on performance of laying hens. Int J Agric Biol 11:495–497

    Google Scholar 

  • Ducluzeau R, Bensaada M (1982) Effet comparé de l'administration unique ou en continu de Saccharomyces boulardii sur l'établissement de diverses souches de Candida dans le tractus digestif de souris gnotoxéniques. Ann Microbiol (Inst Pasteur) 133B:491–501

    Google Scholar 

  • Edwards-Ingram L, Gitsham P, Burton N, Warhurst G, Clarke I, Hoyle D, Oliver SG, Stateva L (2007) Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae. Appl Env Microbiol 73:2458–2467

    Article  CAS  Google Scholar 

  • Elliot DA, Katcher VB, Lowy FD (1991) A 220-kilodalton glycoprotein in yeast extract inhibits Staphylococcus aureus adherence to human endothelial cells. Infect Immun 59(6):2222–2223

    Google Scholar 

  • Eriksson P, Andre L, Ansell R, Blomberg A, Adler L (1995) Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol 17:95–107

    Article  PubMed  CAS  Google Scholar 

  • FAO/WHO (1987) Committee on food additives. 31. World Health Organization Technical Report Series, Geneva

    Google Scholar 

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations and World Health Organization Working Group Report, London Ontario, Canada

    Google Scholar 

  • Fedorak RN, Madsen KM (2004) Probiotics and prebiotics in gastrointestinal disorders. Curr Opin Gastroenterol 20:146–155

    Article  PubMed  Google Scholar 

  • Fiems LO, Cottyn BG, Dussert L, Vanacker JM (1993) Effect of a viable yeast culture on digestibility and rumen fermentation in sheep fed different types of diets. Reprod Nutr Dev 33:43–49

    Article  PubMed  CAS  Google Scholar 

  • Fietto JL, Araujo RS, Valadao FN, Fietto LG, Brandao RL, Neves MJ, Gomes FC, Nicoli JR, Castro IM (2004) Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Canadian J Microbiol 50:615–621

    Article  CAS  Google Scholar 

  • Filho-Lima JV, Vieira EC, Nicoli JR (2000) Antagonistic effect of Lactobacillus acidophilus. Saccharomyces boulardii and Escherichia coli combinations against experimental infections with Shigella flexneri and Salmonella enteritidis subsp. typhimurium in gnotobiotic mice. J Appl Microbiol 88:365–370

    Article  PubMed  CAS  Google Scholar 

  • Fleet GH (1990) Yeast in dairy product a review. J Appl Bacteriol 68:199–211

    PubMed  CAS  Google Scholar 

  • Fleet GH (2006) The commercial and community significance of yeasts in food and beverage production. In: Querol A, Fleet GH (eds) Yeasts in food and beverages, vol 2. Springer, Berlin, pp 1–12

    Chapter  Google Scholar 

  • Fredenucci I, Chomarat M, Boucaud C, Flandrois JP (1998) Saccharomyces boulardii fungemia in a patient receiving Ultralevure therapy. Clin Infect Dis 27:222–223

    Article  PubMed  CAS  Google Scholar 

  • Fredlund E, Druvefors U, Boysen EM, Lingsten K, Schnurer J (2002) Physiological characteristics of the biocontrol yeast Pichia anomala J121. FEMS Yeast Res 2:395–402

    PubMed  CAS  Google Scholar 

  • Gatesoupe FJ (2007) Live yeasts in the gut: natural occurrence, dietary introduction and their effects on fish health and development. Aquaculture 267:20–30

    Article  Google Scholar 

  • Gaxiola R, de Larrinoa IF, Villalba JM, Serrano R (1992) A novel and conserved salt induced protein is an important determinant of salt tolerance in yeast. EMBO J 11:3157–3164

    PubMed  CAS  Google Scholar 

  • Gedek BR (1999) Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 42:261–264

    Article  PubMed  CAS  Google Scholar 

  • Girard P, Pansart Y, Lorette I, Gillardin JM (2003) Dose-response relationship and mechanism of action of Saccharomyces boulardii in castor-oil-induced diarrhoea in rats. Dig Dis Sci 48:770–774

    Article  PubMed  CAS  Google Scholar 

  • Gismondo MR, Drago L, Lombardi A (1999) Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Ag 12:287–292

    Article  CAS  Google Scholar 

  • Gomez-Alarcon RA, Dudas D, Huber IT (1990) Influence of Aspergillus oryzae on rumen and total tract digestion of dietary components. J Dairy Sci 73:703

    Article  PubMed  CAS  Google Scholar 

  • Graff S, Hussain S, Chaumeil JC, Charrueau C (2008) Increased intestinal delivery of viable Saccharomyces boulardii by encapsulation in microspheres. Pharmaceut Res 25(6):1290–1296

    Article  CAS  Google Scholar 

  • Guslandi M, Mezzi G, Sorghi M, Testoni PA (2000) Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 45:1462–1464

    Article  PubMed  CAS  Google Scholar 

  • Han SW, Lee KW, Lee BD, Sung CG (1999) Effect of feeding Aspergillus oryzae culture on fecal microflora, egg qualities and nutrient metabolizabilities in laying hens. Asian Australian J Anim Sci 12:417–421

    Google Scholar 

  • Harris B, Lobo R (1988) Feeding yeast culture to lactating dairy cows. J Dairy Sci 71(suppl 1):276

    Google Scholar 

  • Hassanein SM, Soliman NK (2010) Effect of Probiotic (Saccharomyces cerevisiae) adding to diets on intestinal microflora and performance of hy-line layers hens. J American Sci 6(11):159–169

    Google Scholar 

  • Hennequin C, Kauffmann-Lacroix C, Jobert A, Viard JP, Ricour C, Jacquemin JL, Berche P (2000) Possible role of catheters in Saccharomyces boulardii fungemia. European J Clin Microbiol Infect Dis 19:16–20

    Article  CAS  Google Scholar 

  • Hirimuthugoda NY, Chi Z, Wu L (2007) Probiotic yeasts with phytase activity identified from the gastrointestinal tract of sea cucumbers. SPC Beche de Mer Information Bulletin 26:31–33

    Google Scholar 

  • Holubarova A, Muller P, Svoboda A (2000) A response of yeast cells to heat stress: cell viability and the stability of cytoskeletal structures. Scripta Medica (Brno) 73(6):381–392

    CAS  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220:113–115

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T, De Virgilio C, Bell W, Boller T, Wiemken A (1992) The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccbaromyces cerevisiae. Eur J Biocbem 210:125–132

    Article  CAS  Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein J, Hohman S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680

    Article  PubMed  CAS  Google Scholar 

  • Izadnia F, Wong CT, Kocoshis SA (1998) Brewer’s yeast and Saccharomyces boulardii both attenuate Clostridium difficile induced colonic secretion in the rat. Dig Dis Sci 43:2055–2060

    Article  PubMed  CAS  Google Scholar 

  • Jahn HU, Ullrich R, Scheneider T, Lichr RM, Schieferdecker HL, Holst H, Zeitz M (1996) Immunological and tropical effect of Saccharomyces cesevisceae and Saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion 57:95–104

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen M, Narvhus J (1996) Yeasts and their possible beneficial and negative effects on the quality of dairy products. Int Dairy J 6:755–768

    Article  Google Scholar 

  • Jawhara S, Poulain D (2007) Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically induced colitis. Med Mycol 45:691–700

    Article  PubMed  CAS  Google Scholar 

  • Jespersen L (2003) Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res 3:191–200

    Article  PubMed  CAS  Google Scholar 

  • Kabir SML (2009) The role of probiotics in the poultry industry. Int J Mol Sci 10:3531–3546

    Article  CAS  Google Scholar 

  • Kellems RO, Johnston NP, Wallentine MV, Lagerstedt A, Andrus D, Jones R, Huber JT (1987) Effect of feeding Aspergillus oryzae on performance of cows during early lactation. J Dairy Sci 70(Suppl 1):219

    Google Scholar 

  • Kim SH, Dj YU, Park SY, Lee SJ, Ryu KS (2002) Effects of single or mixed feeding of lactobacillus and yeast on performance, nutrient digestibility intestinal microflora, and fecal NH3 gas emission in laying hens. Korean J Poultry Sci 29:225–231

    Google Scholar 

  • Kim SH, Park SY, Yu DJ, Lee SJ, Ryu KS, Lee DG (2003) Effect of feeding Aspergillus oryzae ferments on performance, intestinal microflora, blood serum components and environmental factors in broiler. Korean J Poult Sci 30:151–159

    Google Scholar 

  • Klich MA, Mullaney EJ (1987) DNA restriction enzyme fragment polymorphism as a tool for rapid differentiation of Aspergillus flavus from Aspergillus oryzae. Exp Mycol 1:170–175

    Article  Google Scholar 

  • Klich MA, Yu J, Chang PK, Mullaney EJ, Bhatnagar D, Cleveland TE (1995) Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and non-aflatoxigenic aspergilli. Appl Microbiol Biotechnol 44:439–443

    Article  PubMed  CAS  Google Scholar 

  • Koedrith P, Dubois E, Scherens B, Jacobs E, Boonchird C, Messenguy F (2008) Identification and characterization of a thermotolerant yeast strain isolated from banana leaves. Sci Asia 34:147–152

    Article  CAS  Google Scholar 

  • Kofli NT, Nagahisa K, Shimizu H, Shioya S (2006) Responses of different strains of Saccharomyces cerevisiae to osmotic stress (Tindak Balas Pelbagai Strain Saccharomyces cerevisiae Terhadap Tekanan Osmotik). Sains Malaysiana 35(2):9–15

    Google Scholar 

  • Kourelis A, Kotzamanidis C, Litopoulou-Tzanetaki E, Scouras ZG, Tzanetakis N, Yiangou M (2010a) Preliminary probiotic selection of dairy and human yeast strains. J Biol Res Thessaloniki 13:93–104

    CAS  Google Scholar 

  • Kourelis A, Kotzamanidis C, Litopoulou-Tzanetaki E, Papaconstantinou J, Tzanetakis N, Yiangou M (2010b) Immunostimulatory activity of potential probiotic yeast strains in the dorsal air pouch system and the gut mucosa. J Appl Microbiol 109:260–271

    PubMed  CAS  Google Scholar 

  • Kumeda Y, Asao T (2001) Heteroduplex panel analysis, a novel method for genetic identification of Aspergillus section Flavi strains. Appl Env Microbiol 67:4084–4090

    Article  CAS  Google Scholar 

  • Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K (2004) Screening of dairy yeast strains for probiotic applications. J Dairy Sci 87:4050–4056

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 50 end of the large-subunit (26 S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26 S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  PubMed  CAS  Google Scholar 

  • Lee CZ, Liou GY, Yuan GF (2006a) Comparison of the aflR gene sequences of strains in Aspergillus section Flavi. Microbiology 152:161–170

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Lee SK, Lee BD (2006b) Aspergillus oryzae as probiotic in poultry: a review. Int J Poult Sci 5:1–3

    Article  CAS  Google Scholar 

  • Lee YH, Tominaga M, Hayashi R, Sakamoto K, Yamada O, Akita O (2006c) Aspergillus oryzae strains with a large deletion of the aflatoxin biosynthetic homologous gene cluster differentiated by chromosomal breakage. Appl Microbiol Biotechnol 72:339–345

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Kim YW, Chi SG, Joo YS, Kim HJ (2008) The Effect of Saccharomyces boulardii on human colon cells and inflammation in rats with trinitrobenzene sulfonic acid-induced colitis. Dig Dis Sci 54:255–263

    Article  PubMed  CAS  Google Scholar 

  • Leuschner RGK, Bew J, Fourcassier P, Bertin G (2004) Validation of the official control method based on polymerase chain reaction (PCR) for identification of authorised probiotic yeast in animal feed. Syst Appl Microbiol 27:492–500

    Article  PubMed  CAS  Google Scholar 

  • Li N, Zhang LM, Zhang KQ, Deng JS, Prandl R, Schoff F (2006) Effects of heat stress on yeast heat shock factor-promoter binding in vivo. Acta Biochimica et Biophysica Sinica 38(5):356–362

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Dıaz TM, Santos JA, Prieto M, Garcıa-Lopez ML, Otero A (1995) Mycoflora of a traditional Spanish blue cheese. Neth Milk Dairy J 49:191–199

    Google Scholar 

  • Lopitz-Otsoa F, Rementeria A, Elguezabal N, Garaizar J (2006) Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Revista Iberoamericana de Micologia 23:67–74

    Article  PubMed  Google Scholar 

  • Lourens A, Viljoen BC (2001) Growth and survival of a probiotic yeast in dairy products. Food Res Int 34:791–796

    Article  Google Scholar 

  • MacKenzie KF, Singh KK, Grown AD (1988) Water stress plating hypersensitivity of yeast: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134:1661–1666

    PubMed  CAS  Google Scholar 

  • MacKenzie DA, Defernez M, Dunn WB, Brown M, Fuller LJ, Seco de Herrera SRM, Gunther A, James SA, Eagles J, Philo M, Goodacre R, Roberts IN (2008) Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics. Yeast 25:501–512

    Article  PubMed  CAS  Google Scholar 

  • Marcus KM, Huber IT, Cramer S (1986) Influence of feeding Vitaferm during hot weather on performance of lactating cows in a large dairy herd. J Dairy Sci 69(Suppl 1):188

    Google Scholar 

  • Marteau P, Gerhardt MF, Myara A, Bouvier E, Trivin F, Rambaud JC (1995) Metabolism of bile salts by alimentary bacteria during transit in human small bowel. Microbiol Ecol Health Dis 8:151–157

    Article  Google Scholar 

  • Martins CVB, Horii J, Kleiner AP (2004) Characterization of fusion products from protoplasts of yeasts and their segregates by electrophortic karyotyping and RAPD. Rev Microbial 30:1–4

    Google Scholar 

  • Martins FS, Nardi RMD, Arantes RME, Rosa CA, Neves M, Nicoli JR (2005) Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. J Gen Appl Microbiol 51:83–92

    Article  PubMed  CAS  Google Scholar 

  • Martins FS, Rodrigues ACP, Tiago FCP, Penna FJ, Rosa CA, Arantes RME, Nardi RMD, Neves MJ, Nicoli JR (2007) Saccharomyces cerevisiae strain 905 reduces the translocation of Salmonella enteric serotype Typhimurium and stimulates the immune system in gnotobiotic and conventional mice. J Med Microbiol 56:352–359

    Article  PubMed  CAS  Google Scholar 

  • Martins FS, Castro IM, Rosa CA, Nicoli JR, Neves MJ (2008) Effect of the trehalose levels on the screening of yeast as probiotic by in vivo and in vitro assays. Brazilian J Microbiol 39:50–55

    Article  Google Scholar 

  • Martins FS, Silva AA, Vieira AT, Barbosa FHF, Arantes RME, Teixeira MM, Nicoli JR (2009) Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties. Arch Microbiol 191:623–630

    Article  PubMed  CAS  Google Scholar 

  • Masek T, Mikulec Z, Valpotic H, Antunac N, Mikulec N, Stojevic Z, Filipovic N, Pahovic S (2008) Influence of live yeast culture (Saccharomyces cerevisiae) on milk production and composition, and blood biochemistry of grazing dairy ewes during the milking period. Acta Vet Brno 77:547–554

    Article  CAS  Google Scholar 

  • Massot J, Descauclois J, Astoin J (1982) Protection par Saccharomyces boulardii de la iarrhée à E. coli du souriceau. Ann Pharmac Fran 40(5):445–449

    Google Scholar 

  • McCullough MJ, Clemons KV, McCusker JH, Stevens DA (1998) Species identification and virulence attributes of Saccharomyces boulardii (nom. inval). J Clin Microbiol 36:2613–2617

    PubMed  CAS  Google Scholar 

  • McFarland LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 16(18):2202–2222

    Article  PubMed  Google Scholar 

  • McFarland LV, Surawicz CM, Greenberg RN, Fekety R, Elmer GW, Moyer KA, Melcher SA, Bowen KE, Cox JL, Noorani Z (1994) A randomized placebocontrolled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. J American Med Assoc 271:1913–1918

    Article  CAS  Google Scholar 

  • McFarland LV, Surawicz CM, Greenberg RN, Elmer GW, Moyer KA, Melcher SA, Bowen KE, Cox JL (1995) Prevention of beta-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. American J Gastroenterol 90:439–448

    CAS  Google Scholar 

  • Miller-Webster T, Hoover WH, Holt M (2002) Influence of yeast culture on ruminal microbial metabolism in continuous culture. J Dairy Sci 85:2009–2014

    Article  PubMed  CAS  Google Scholar 

  • Miranda RLA, Mendoza MGD, Barcena-Gama JR, Gonzalez MSS, Ferrara R, Ortega CME, Cobos PMA (1996) Effect of Saccharomyces cerevisiae or Aspergillus oryzae cultures and NDF level on parameters of ruminal fermentation. Anim Feed Sci Tech 63:289–296

    Article  Google Scholar 

  • Molina FI, Jong SC, Huffman JL (1993) PCR amplification of the 3 V external transcribed and intergenic spacers of the ribosomal DNA repeat unit in three species of Saccharomyces. FEMS Microbiol Lett 108:259–263

    PubMed  CAS  Google Scholar 

  • Montiel D, Dickinson MJ, Lee HA, Dyer PS, Jeenes DJ, Roberts IN, James S, Fuller LJ, Matsuchima K, Archer DB (2003) Genetic differentiation of the Aspergillus section Flavi complex using AFLP fingerprints. Mycol Res 107:1427–1434

    Article  PubMed  CAS  Google Scholar 

  • Morris GJ, Winters L, Coulson GE, Clarke KJ (1986) Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. J Gen Microbiol 132:2023–2034

    PubMed  CAS  Google Scholar 

  • Morris GJ, Coulson GE, Clarke KJ (1988) Freezing injury in Saccharomyces cerevisiae: the effect of growth conditions. Cryobiology 25:471–482

    Article  Google Scholar 

  • Moslehi-Jenabian S, Pedersen LL, Jespersen L (2010) Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2:449–473

    Article  CAS  Google Scholar 

  • Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Łukaszewicz M (2010) Capric Acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS ONE 5(8):e12050. doi:10.1371/journal.pone.0012050

    Article  PubMed  CAS  Google Scholar 

  • Neves MJ, Etchebehere L, Brandao RL, Castro IM, Lima ME, Nicoli JR (2002) Partial characterization of cholera toxin binding on membranes of Saccharomyces boulardii. Microecol Ther 29:185–190

    CAS  Google Scholar 

  • Newbold CJ (1996) Probiotics for ruminants. Ann Zootech 45:329–335

    Article  Google Scholar 

  • Newbold CJ, Wallace RJ, McIntosh FM (1996) Mechanisms of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. British J Nutr 76(2):249–261

    Article  CAS  Google Scholar 

  • Niault M, Thomas F, Prost J, Ansari FH, Kalfon P (1999) Fungemia due to Saccharomyces species in a patient treated with enteral Saccharomyces boulardii. Clin Infect Dis 28:930

    Article  PubMed  CAS  Google Scholar 

  • Nicoli JR, Castro IM (2004) Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Canadian J Microbiol 50:615–621

    Article  Google Scholar 

  • Nilson A, Peralta JMF, Miazzo RD (2004) Use of brewer’s yeast (S. cerevisiae) to replace part of the vitamin mineral premix in finisher broiler diets. XXII Worlds Poultry Congress, Istanbul, Turkey

    Google Scholar 

  • Nisbet DJ, Martin SA (1991) Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium. J Anim Sci 69:4628–4633

    PubMed  CAS  Google Scholar 

  • Nivien A, Abosereh EAM, Soliman AB, Khalek AEL (2006) Mutation induction for genetic improvement of saccharomyces boulardii which used as a probiotic yeast. Res J Agr Biol Sci 2(6):478–482

    Google Scholar 

  • Ofek I, Mirelman D, Sharon N (1977) Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265:623–625

    Article  PubMed  CAS  Google Scholar 

  • Oh Y, Osato MS, Han X, Bennett G, Hong WK (2002) Folk yoghurt kills Helicobacter pylori. J Appl Microbiol 93:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Omar AHM (2006) Nutritional studies on using some feed additives in poultry ration. M. Sc Thesis, Department of Animal Production, Faculty of Agriculture, Minia University, Minia Egypt

    Google Scholar 

  • O’Sullivan DJ (2001) Screening of intestinal microflora for effective probiotic bacteria. Agri Food Chem 49(4):1751–1760

    Article  CAS  Google Scholar 

  • Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S (1999a) Probiotics: mechanisms and established effects. Int Dairy J 9:43–52

    Article  Google Scholar 

  • Ouwehand AC, Kirjavainen PV, Grfnlund MM, Isolauri E, Salminen S (1999b) Adhesion of probiotic micro-organisms to intestinal mucus. Int Dairy J 9:623–630

    Article  Google Scholar 

  • Ouwehand AC, Tflkkf S, Kulmala J, Salminen S, Salminen E (2000) Adhesion of inactivated probiotic strains to intestinal mucosa. Lett Appl Microbiol 21:82–86

    Article  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie van Leewenhoek 82:279–289

    Article  CAS  Google Scholar 

  • Pardo S, Galvagno MÁ, Cerrutti P (2009) Estudios de la viabilidad y la vitalidad frente al congelado de la levadura probiótica Saccharomyces boulardii: efecto del preacondicionamiento fisiológico. Rev Iberoam Micol 26(2):155–160

    Article  PubMed  Google Scholar 

  • Park DY, Namkung H, Paik IK (2001) Effect of supplementary yeast culture on the performance of laying hens. J Ani Sci Tech 43(5):639–646

    Google Scholar 

  • Park JH, Park GH, Ryu KS (2002) Effect of feeding organic acid mixture and yeast culture on performance and egg quality of laying hens. Korea J Poult Sci 29(2):109–115

    CAS  Google Scholar 

  • Pasha C, Kuhad RC, Rao LV (2007) Strain improvement of thermotolerant Saccharomyces cerevisiae VS strain for better utilization of lignocellulosic substrates. J Appl Microbiol 103(5):1480–1489

    Article  PubMed  CAS  Google Scholar 

  • Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poul Sci 82:627–631

    CAS  Google Scholar 

  • Periti P, Tonelli F (2001) Preclinical and clinical pharmacology of biotherapeutic agents: Saccharomyces boulardii. J Chemother 13:473–493

    PubMed  CAS  Google Scholar 

  • Peterson SW, Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeast. Syst Appl Microbiol 14:124–129

    CAS  Google Scholar 

  • Piper PW (1993) Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11:339–356

    Article  PubMed  CAS  Google Scholar 

  • Piva G, Belladona S, Fusconi G, Sicbaldi F (1993) Effects of yeast on dairy cow performance, ruminal fermentation, blood components, and milk manufacturing properties. J Dairy Sci 76:2717–2722

    Article  PubMed  CAS  Google Scholar 

  • Pletincx M, Legein J, Vandenplas Y (1995) Fungemia with Saccharomyces boulardii in a 1-year-old girl with protracted diarrhea. J Pediatr Gastroenterol Nutr 21:113–115

    Article  PubMed  CAS  Google Scholar 

  • Posteraro B, Sanguinetti M, Romano L, Torelli R, Novarese L, Fadda G (2005) Molecular tools for differentiating probiotic and clinical strains of Saccharomyces cerevisiae. Int J Food Microbial 103:295–304

    Article  CAS  Google Scholar 

  • Pothoulakis C (2009) Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii. Aliment Pharmacol Ther 30:826–833

    Article  PubMed  CAS  Google Scholar 

  • Pothoulakis C, Kelly CP, Joshi MA, Gao N, O’Keane CJ, Castagliuolo I, Lamont JT (1993) Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 104:1108–1115

    PubMed  CAS  Google Scholar 

  • Psani M, Kotzekidou P (2006) Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J Microbiol Biotechnol 22:1329–1336

    Article  CAS  Google Scholar 

  • Putnam DE, Schwab CG, Socha MT, Whitehouse NL, Kierstead NA, Garthwaite BD (1997) Effect of yeast culture in the diets of early lactation dairy cows on ruminal fermentation and passage of nitrogen fractions and amino acids to the small intestine. J Dairy Sci 80(2):374–384

    Article  PubMed  CAS  Google Scholar 

  • Rigothier MC, Maeconis J, Gapral P (1994) Effets des levures Saccharomyces boulardii sur les trophozoites d’entamoeba histolytica in vitro et dans l’amibiase caecale du jeune rat. Parasitol Res 80:10–15

    Article  PubMed  CAS  Google Scholar 

  • Rijnders BJ, Van Wijngaerden E, Verwaest C, Peetermans WE (2000) Saccharomyces fungemia complicating Saccharomyces boulardii treatment in a non-immunocompromised host. Inten Care Med 26:825

    Article  CAS  Google Scholar 

  • Rios G, Ferrando A, Serrano R (1997) Mechanisms of salt tolerance conferred by over expression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13:515–528

    Article  PubMed  CAS  Google Scholar 

  • Riquelme AJ, Calvo MA, Guzman AM, Depix MS, Garcia P, Perez C, Arrese M, Labarca JA (2003) Saccharomyces cerevisiae fungemia after Saccharomyces boulardii treatment in immunocompromised patients. J Clin Gastroenterol 36:41–43

    Article  PubMed  Google Scholar 

  • Robinson PH, Garrett JE (1999) Effect of yeast culture (Saccharomyces cerevisiae) on adaptation of cows to postpartum diets and on lactational performance. J Anim Sci 77:988–999

    PubMed  CAS  Google Scholar 

  • Rodrigues ACP, Nardi RM, Bambirra EA, Vieira EC, Nicoli JR (1996) Effects of Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexneri in conventional and gnotobiotic mice. J Appl Microbiol 81:251–256

    Article  CAS  Google Scholar 

  • Rodrigues AC, Cara DC, Fretez SH, Cunha FQ, Vieira EC, Nicoli JR, Vieira LQ (2000) Saccharomyces boulardii stimulates sIg A production and the phagocytic system of gnotobiotic mice. J Appl Microbiol 89:404–414

    Article  PubMed  CAS  Google Scholar 

  • Saarela MH, Alakomi HL, Puhakka A, Matto J (2009) Effect of the fermentation pH on the storage stability of Lactobacillus rhamnosus preparations and suitability of in vitro analyses of cell physiological functions to predict it. J Appl Microbiol 106:1204–1212

    Article  PubMed  CAS  Google Scholar 

  • Salminen SJ, von Wright AJ, Ouwehand AC, Holzapfel WH (2001) Safety assessment of probiotics and starters. In: Adams MR, Nout MJR (eds), Fermentation and Food Safety.Aspen Publishers, Gaithersburg, 239–251

    Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11:2357–2364

    PubMed  CAS  Google Scholar 

  • Sargent G, Wickens H (2004) Brewers’ yeast in C. difficile infection: probiotic or B-group vitamins? The Pharmaceut J 273:230–231

    Google Scholar 

  • Scanlan PD, Marchesi JR (2008) Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. The ISME J 2:1183–1193

    Article  CAS  Google Scholar 

  • Schingoethe DJ, Linke KN, Kalscheur KF, Hippen AR, Rennich DR, Yoon I (2004) Feed efficiency of mid-lactation dairy cows fed yeast culture during summer. J Dairy Sci 87:4178–4181

    Article  PubMed  CAS  Google Scholar 

  • Seguela JP, Massot J, Nesson J, Patte F (1978) Action d’un Saccharomyces lors d’une infestation expérimentale a Candida albicans chez le rat normal et chez le rat traité par antibiotique. Bull Soc Mycol Med 7:199–202

    Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    Article  PubMed  CAS  Google Scholar 

  • Shareef AM, Al-Dabbagh ASA (2009) Effect of probiotic (Saccharomyces cerevisiae) on performance of broiler Chicks. Iraqi J Vet Sci 23:23–29

    Google Scholar 

  • Sharaf AN, Abdel N, Abosereh R, Abdalla SM, Mohamed HALA, Salim RGS (2009) Impact of Some Genetic treatments on the probiotic activities of Saccharomyces boulardii. Res J Cell Mol Biol 3(1):12–19

    CAS  Google Scholar 

  • Sharma KS, Sharma KV, Kumari M, Shavani K, Mukul KS, Katoch BS (2001) Performance of laying pullets fed microbial combinations up to eighteen weeks of age/the age of sexual maturity. Indian J Ani Sci 71(6):566–569

    Google Scholar 

  • Sharma SC (1997) A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152(1):11–15

    Article  PubMed  CAS  Google Scholar 

  • Shivani K, Mukul KS, Meena K, Katoch BS (2003) Biological performance of chicken fed newly isolated probiotics. Indian J Ani Sci 73(11):1271–1273

    Google Scholar 

  • Smits GJ, Kapteyn JC, Endo HVD, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352

    Article  PubMed  CAS  Google Scholar 

  • Spring P, Wenk C, Dawson KA, Newman KE (2000) The effects of dietary mannanoligosaccharides on cecal parameter and the concentrations of enteric bacteria in the ceca of Salmonella challenged broiler chicks. Poult Sci 79:205–211

    PubMed  CAS  Google Scholar 

  • Steidler L (2003) Genetically engineered probiotics. Best Prac Res Clin Gastroenterol 17:861–876

    Article  Google Scholar 

  • Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  PubMed  CAS  Google Scholar 

  • Surawicz CM, Elmer GW, Speelman P, McFarland LV, Chinn J, VanBelle G (1989a) Prevention of antibiotic associated diarrhoea by Saccharomyces boulardii: a prospective study. Gastroenterology 96:981–988

    PubMed  CAS  Google Scholar 

  • Surawicz CM, McFarland LV, Elmer G, Chinn J (1989b) Treatment of recurrent Clostridium difficile colitis with vancomycin and Saccharomyces boulardii. American J Gastroenterol 84:1285–1287

    CAS  Google Scholar 

  • Tasteyre A, Barc MC, Karjalainen T, Bourlioux P, Collignon A (2002) Inhibition of in vitro adherence of Clostridium difficile by Saccharomyces boulardii. Microbial Pathogen 32:219–225

    Article  CAS  Google Scholar 

  • Tuohy KM, Probert HM, Smejkal CW, Gibson GR (2003) Using probiotics and prebiotics to improve gut health. Drug Dis Today 8:692–700

    Article  Google Scholar 

  • Urubschurov V, Janczyk P, Pieper R, Souffrant WB (2008) Microbiota in the gastrointestinal tract of weaned piglets with emphasis on yeasts. Proc Soc Nutr Physiol 17:107

    Google Scholar 

  • Valente P, Gouveia FC, de Lemos GA, Pimentel D, van Elsas JD, Mendonca-Hagler LC, Hagler AN (1996) PCR amplification of the rDNA internal transcribed spacer region for differentiation of Saccharomyces cultures. FEMS Microbiol Lett 137:253–256

    Article  PubMed  CAS  Google Scholar 

  • van der Aa kuhle A, Skovgaard K, Jespersen L (2005) In vitro screening of probiotic properties of Saccharomyces cerevisiae var boulardii and food borne Saccharomyces cerevisiae strains. Int J Food Microbiol 101:29–39

    Article  Google Scholar 

  • Vidon N, Huchet B, Rambaud JC (1986) Influence de Saccharomyces boulardii, sur la sécrétion jéjunale induite chez le rat par la toxine cholérique. Gastroenterol Clin Biol 10:13–16

    PubMed  CAS  Google Scholar 

  • Wallentine MV, Johnston NP, Andrus D, Jones R, Hubex JT, Higginbotham GE (1986) The effect of feeding Aspergillus oryme culture-vitamin mix on the performance of lactating dairy cows during periods of heat stress. J Dairy Sci 69(suppl 1):189

    Google Scholar 

  • Wang Z, Eastridge ML, Qiu X (2001a) Effects of forage neutral detergent fiber and yeast culture on performance of cows during early lactation. J Dairy Sci 84:204–212

    Article  PubMed  CAS  Google Scholar 

  • Wang BD, Chen DC, Kuo TT (2001b) Characterization of Saccharomyces cerevisiae mutant with over secretion phenotype. Appl Microbiol Biotechnol 55:712–720

    Article  PubMed  CAS  Google Scholar 

  • WHO (1995) Saccharomyces boulardii: a valuable adjunct in recurrent Clostridium difficile disease? WHO Drug Inf 9(1):15–16

    Google Scholar 

  • Wiedmeier RD, Arambel MJ, Walters JL (1987) Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. J Dairy Sci 70:2063–2068

    Article  PubMed  CAS  Google Scholar 

  • Williams PEV, Tait CAG, Innes GM, Newbold CJ (1991) Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J Anim Sci 69:3016–3026

    PubMed  CAS  Google Scholar 

  • Wohlt JE, Finkelstein AD, Chung CH (1991) Yeast culture to improve intake, nutrient digestibility and performance by cattle during early lactation. J Dairy Sci 74:1395–1400

    Article  PubMed  CAS  Google Scholar 

  • Wohlt JE, Corcione TT, Zajac PK (1998) Effect of yeast on feed intake and performance of cows fed diets based on silage during early lactation. J Dairy Sci 81:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Yousefi M, Karkoodi K (2007) Effect of probiotic thepax and Saccharomyces cerevisiae supplementation on performance and egg quality of laying hens. Int Poult Sci 6:52–54

    Article  Google Scholar 

  • Yu P, Huber JT, Theurer CB, Chen KH, Nussio LG, Wu Z (1997) Effect of steam-flaked or steam rolled corn with or without Aspergillus oryzae in the diet on performance of dairy cows fed during hot weather. J Dairy Sci 80:3293–3297

    Article  PubMed  CAS  Google Scholar 

  • Zhang AW, Lee BD, Lee SK, Lee KW, An GH, Song KB, Lee CH (2005) Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poult Sci 84:1015–1021

    PubMed  CAS  Google Scholar 

  • Zunic P, Lacotte J, Pegoix M, Buteux G, Leroy G, Mosquet B, Moulin M (1991) Saccharomyces boulardii fungemia. Apropos of a case. Therapie 46:498–499

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Kumar Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nayak, S.K. (2011). Biology of Eukaryotic Probiotics. In: Liong, MT. (eds) Probiotics. Microbiology Monographs, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20838-6_2

Download citation

Publish with us

Policies and ethics