Skip to main content

Single-Walled Carbon Nanotubes

  • Chapter
Springer Handbook of Nanomaterials

Abstract

Single-walled carbon nanotubes (SWCNTs) are hollow, long cylinders with extremely large aspect ratios, made of one atomic sheet of carbon atoms in a honeycomb lattice. They possess extraordinary thermal, mechanical, and electrical properties and are considered as one of the most promising nanomaterials for applications and basic research. This chapter describes the structural, electronic, vibrational, optical, transport, mechanical, and thermal properties of these unusual one-dimensional (1-D) nanomaterials. The crystallographic (Sect. 4.2.1), electronic (Sect. 4.2.2), vibrational (Sect. 4.2.3), optical (Sect. 4.4), transport (Sect. 4.5), thermal (Sect. 4.6.1), and mechanical (Sect. 4.6.2) properties of these unusual 1-D nanomaterials will be outlined. In addition, we will provide an overview of the various methods developed for synthesizing SWCNTs in Sect. 4.3.

Even after more than two decades of extensive basic studies since their discovery, carbon nanotubes continue to surprise researchers with potential new applications and interesting discoveries of novel phenomena and properties. Because of an enormous thrust towards finding practical applications, carbon nanotube research is actively being pursued in diverse areas including energy storage, molecular electronics, nanomechanical devices, composites, and chemical and bio-sensing.

Structurally, carbon nanotubes are made up of sp2-bonded carbon atoms, like graphite, and can be conceptually viewed as rolled-up sheets of single-layer graphite, or graphene. Their diameter typically lies in the nanometer range while their length often exceeds microns, sometimes centimeters, thus making them 1-D nanostructures. Depending on the number of tubes that are arranged concentrically, carbon nanotubes are further classified into single-walled and multi- walled nanotubes. Single-walled carbon nanotubes, the subject of this chapter, are especially interesting. They are ideal materials in which to explore one-dimensional physics and strong Coulomb correlations. In addition, their cylindrical topology allows them to exhibit nonintuitive quantum phenomena when placed in a parallel magnetic field, due to the Aharonov–Bohm effect. A number of research groups have found exotic many-body effects through a variety of transport, optical, magnetic, and photoemission experiments.

Their electronic properties are very sensitive to their microscopic atomic arrangements and symmetry, covering a wide spectrum of energy scales. They can be either metallic or semiconducting with varying band gaps, depending on their diameter and chirality. Semiconducting nanotubes are particularly promising for photonic device applications with their diameter-dependent, direct band gaps, while metallic tubes are considered to be ideal candidates for a variety of electronic applications such as nanocircuit components and power transmission cables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D:

one-dimensional

2-D:

two-dimensional

3-D:

three-dimensional

AC:

alternating current

AD:

arc discharge

AFM:

atomic force microscopy

Ab:

antibody

CNT:

carbon nanotube

CO:

cuboctahedron

CP:

coherent phonon

CVD:

chemical vapor deposition

DC:

direct current

DOS:

density of states

FFT:

fast Fourier transform

FIT:

fluctuation-induced tunneling

GTBMD:

generalized tight-binding molecular dynamics

HRTEM:

high-resolution transmission electron microscopy

IR:

infrared

LA:

longitudinal acoustic

MD:

molecular dynamics

MWCNT:

multiwalled carbon nanotube

MWNT:

multiwalled nanotubes

PL:

photoluminescence

PLE:

photoluminescence excitation

RBM:

radial breathing mode

RRS:

resonant Raman scattering

S–W:

Stone–Wales

SDS:

sodium dodecyl sulfate

SEM:

scanning electron microscopy

SWCNT:

single-walled carbon nanotube

SWNT:

single-walled nanotube

TA:

transverse acoustic

TEM:

transmission electron microscopy

UV:

ultraviolet

VHS:

van Hove singularity

VLS:

vapor–solid–liquid

VRH:

variable range hopping

VSS:

vapor–solid–solid

Van:

vancomycin

References

  1. S. Iijima: Helical microtubules of graphitic carbon, Nature 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Topics in Applied Physics, Vol. 80 (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  3. S. Reich, C. Thomsen, J. Maultzsch: Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim 2004)

    Google Scholar 

  4. M.J. OʼConnell (Ed.): Carbon Nanotubes: Properties and Applications (CRC, Boca Raton 2006)

    Google Scholar 

  5. A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Eds.): Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Topics in Applied Physics, Vol. 111 (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  6. T. Giamarchi: Quantum Physics in One Dimension (Oxford Univ. Press, Oxford 2004)

    Google Scholar 

  7. P. Avouris, M. Freitag, V. Perebeinos: Carbon-nanotube photonics and optoelectronics, Nat. Photonics 2, 341–350 (2008)

    Article  CAS  Google Scholar 

  8. S. Nanot, E.H. Hároz, J.-H. Kim, R.H. Hauge, J. Kono: Optoelectronic properties of single-wall carbon nanotubes, Adv. Mater. 24, 4977–4994 (2012)

    Article  CAS  Google Scholar 

  9. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito: Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett. 10, 751–758 (2010)

    Article  CAS  Google Scholar 

  10. H. Ajiki, T. Ando: Aharonov–Bohm effect in carbon nanotubes, Physica B 201, 349–352 (1994)

    Article  CAS  Google Scholar 

  11. M.F. Islam, D.E. Milkie, C.L. Kane, A.G. Yodh, J.M. Kikkawa: Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes, Phys. Rev. Lett. 93, 037404 (2004)

    Article  CAS  Google Scholar 

  12. Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama: Polarization dependence of the optical absorption of single-walled carbon nanotubes, Phys. Rev. Lett. 94, 087402 (2005)

    Article  CAS  Google Scholar 

  13. H. Ajiki, T. Ando: Magnetic properties of carbon nanotubes, J. Phys. Soc. Jpn. 62, 2470–2480 (1993)

    Article  CAS  Google Scholar 

  14. J.P. Lu: Novel magnetic properties of carbon nanotubes, Phys. Rev. Lett. 74, 1123–1126 (1995)

    Article  CAS  Google Scholar 

  15. S. Zaric, G.N. Ostojic, J. Kono, J. Shaver, V.C. Moore, R.H. Hauge, R.E. Smalley, X. Wei: Estimation of magnetic susceptibility anisotropy of carbon nanotubes using magneto-photoluminescence, Nano Lett. 4, 2219–2221 (2004)

    Article  CAS  Google Scholar 

  16. M.F. Islam, D.E. Milkie, O.N. Torrens, A.G. Yodh, J.M. Kikkawa: Magnetic heterogeneity and alignment of single wall carbon nanotubes, Phys. Rev. B 71, 201401 (2005)

    Article  CAS  Google Scholar 

  17. T.A. Searles, Y. Imanaka, T. Takamasu, H. Ajiki, J.A. Fagan, E.K. Hobbie, J. Kono: Large anisotropy in the magnetic susceptibility of metallic carbon nanotubes, Phys. Rev. Lett. 105, 017403 (2010)

    Article  CAS  Google Scholar 

  18. T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K.H. An, D.J. Bae, Y.H. Lee: Terahertz conductivity of anisotropic single walled carbon nanotube films, Appl. Phys. Lett. 80, 3403–3405 (2002)

    Article  CAS  Google Scholar 

  19. L. Ren, C.L. Pint, L.G. Booshehri, W.D. Rice, X. Wang, D.J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, J. Kono: Carbon nanotube terahertz polarizer, Nano Lett. 9, 2610–2613 (2009)

    Article  CAS  Google Scholar 

  20. J. Kyoung, E.-Y. Jang, M.D. Lima, H.-R. Park, R.-O. Robls, X. Lepro, Y.-H. Kim, R.H. Baughman, D.-S. Kim: A reel-wound carbon nanotube polarizer for terahertz frequencies, Nano Lett. 11, 4227–4231 (2011)

    Article  CAS  Google Scholar 

  21. L. Ren, C.L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, J. Kono: Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks, Nano Lett. 12, 787–790 (2012)

    Article  CAS  Google Scholar 

  22. H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255–1266 (1993)

    Article  CAS  Google Scholar 

  23. T. Ando: Theory of electronic states and transport in carbon nanotubes, J. Phys. Soc. Jpn. 74, 777–817 (2005)

    Article  CAS  Google Scholar 

  24. J. Kono, S. Roche: Magnetic properties. In: Carbon Nanotubes: Properties and Applications, ed. by M.J. OʼConnell (CRC, Boca Raton 2006), 119–151

    Google Scholar 

  25. J. Kono, R.J. Nicholas, S. Roche: High magnetic field phenomena in carbon nanotubes. In: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, Heidelberg 2008), 393–421

    Google Scholar 

  26. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Book  Google Scholar 

  27. A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat (eds.): Understanding Carbon Nanotubes: From Basics to Application, Lecture Notes in Physics, Vol. 677 (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  28. F. Léonard: The Physics of Carbon Nanotube Devices (William Andrew, Norwich 2009)

    Google Scholar 

  29. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim: The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

    Article  CAS  Google Scholar 

  30. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus: Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, 2204–2206 (1992)

    Article  CAS  Google Scholar 

  31. N. Hamada, S. Sawada, A. Oshiyama: New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992)

    Article  CAS  Google Scholar 

  32. H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255–1266 (1993)

    Article  CAS  Google Scholar 

  33. J.W. Mintmire, B.I. Dunlap, C.T. White: Are fullerene tubules metallic?, Phys. Rev. Lett. 68, 631–634 (1992)

    Article  CAS  Google Scholar 

  34. P.R. Wallace: The band theory of graphite, Phys. Rev. 71(9), 622–634 (1947)

    Article  CAS  Google Scholar 

  35. B. Bourlon: Physique Interfeuillet Dans Les Nanotubes de Carbone Multifeuillets. Ph.D. Thesis (Université Paris VI, Paris 2005)

    Google Scholar 

  36. C. Kane, L. Balents, M.P.A. Fisher: Coulomb interactions and mesoscopic effects in carbon nanotubes, Phys. Rev. Lett. 79, 5086–5089 (1997)

    Article  CAS  Google Scholar 

  37. M.S. Dresselhaus, P.C. Eklund: Phonons in carbon nanotubes, Adv. Phys. 49(6), 705–814 (2000)

    Article  CAS  Google Scholar 

  38. R.A. Jishi, L. Venkataraman, M.S. Dresselhaus, G. Dresselhaus: Phonon modes in carbon nanotubules, Chem. Phys. Lett. 209(1/2), 77–82 (1993)

    Article  CAS  Google Scholar 

  39. P.C. Eklund, J.M. Holden, R.A. Jishi: Phonon modes in carbon nanotubules, Carbon 33(7), 959–972 (1995)

    Article  CAS  Google Scholar 

  40. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M.S. Dresselhaus: Raman intensity of single-wall carbon nanotubes, Phys. Rev. B 57, 4145–4153 (1998)

    Article  CAS  Google Scholar 

  41. O. Dubay, G. Kresse: Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B 67, 035401 (2003)

    Article  Google Scholar 

  42. J. Yu, R.K. Kalia, P. Vashishta: Phonons in graphitic tubules: A tight-binding molecular dynamics study, J. Chem. Phys. 103, 6697 (1995)

    Article  CAS  Google Scholar 

  43. M. Menon, E. Richter, K.R. Subbaswamy: Structural and vibrational properties of fullerenes and nanotubes in a nonorthogonal tight-binding scheme, J. Chem. Phys. 104(15), 5875–5882 (1996)

    Article  CAS  Google Scholar 

  44. J. Kürti, G. Kresse, H. Kuzmany: First-principles calculations of the radial breathing mode of single-wall carbon nanotubes, Phys. Rev. B 58, R8869–R8872 (1998)

    Article  Google Scholar 

  45. D. Sánchez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón: Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Phys. Rev. B 59, 12678–12688 (1999)

    Article  Google Scholar 

  46. L.-H. Ye, B.-G. Liu, D.-S. Wang, R. Han: Ab initio phonon dispersions of single-wall carbon nanotubes, Phys. Rev. B 69, 235409 (2004)

    Article  CAS  Google Scholar 

  47. J. Hone: Phonons and thermal properties of carbon nanotubes. In: Carbon Nanotubes, Topics in Applied Physics, Vol. 80, ed. by M. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, Heidelberg 2001) pp. 273–286

    Chapter  Google Scholar 

  48. S. Rols, Z. Benes, E. Anglaret, J.L. Sauvajol, P. Papanek, J.E. Fischer, G. Coddens, H. Schober, A.J. Dianoux: Phonon density of states of single-wall carbon nanotubes, Phys. Rev. Lett. 85, 5222–5225 (2000)

    Article  CAS  Google Scholar 

  49. J. Hone: Carbon nanotubes: Thermal properties. In: Dekker Encyclopedia of Nanoscience and Nanotechnology, ed. by J.A. Schwarz, C.I. Contescu, K. Putyera (Marcel Dekker, New York 2004) pp. 603–610

    Google Scholar 

  50. A. Mizel, L.X. Benedict, M.L. Cohen, S.G. Louie, A. Zettl, N.K. Budraa, W.P. Beyermann: Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes, Phys. Rev. B 60, 3264–3270 (1999)

    Article  CAS  Google Scholar 

  51. D. Kahn, J.P. Lu: Vibrational modes of carbon nanotubes and nanoropes, Phys. Rev. B 60, 6535–6540 (1999)

    Article  CAS  Google Scholar 

  52. P. Eklund, P.A.R. Blackmon, A.J. Hart, J. Kong, P. Bhabendra, A. Rao, A. Rinzler: International Assessment of Research and Development on Carbon Nanotubes: Manufacturing and Applications (World Technology Evaluation Center, Arlington 2007), available online at http://www.wtec.org/cnm/

    Google Scholar 

  53. M. Kundrapu, J. Li, A. Shashurin, M. Keidar: A model of carbon nanotube synthesis in arc discharge plasmas, J. Phys. D 45, 315305 (2012)

    Article  CAS  Google Scholar 

  54. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett. 243, 49–54 (1995)

    Article  CAS  Google Scholar 

  55. T.W. Ebbesen, P.M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358(6383), 220–222 (1992)

    Article  CAS  Google Scholar 

  56. D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363(6430), 605–607 (1993)

    Article  CAS  Google Scholar 

  57. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett. 243(1/2), 49–54 (1995)

    Article  CAS  Google Scholar 

  58. B.I. Yakobson, R.E. Smalley: Fullerene nanotubes: C1000000 and beyond, Am. Sci. 85(4), 324–337 (1997)

    Google Scholar 

  59. M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, R.E. Smalley: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, J. Vac. Sci. Technol. A 19(4), 1800–1805 (2001)

    Article  CAS  Google Scholar 

  60. Y. Liu, W.Z. Qian, Q. Zhang, G.Q. Ning, G.H. Luo, Y. Wang, D.Z. Wang, F. Wei: Synthesis of high-quality, double-walled carbon nanotubes in a fluidized bed reactor, Chem. Eng. Technol. 32(1), 73–79 (2009)

    Article  CAS  Google Scholar 

  61. Y. Wang, B. Li, P.S. Ho, Z. Yao, L. Shi: Effect of supporting layer on growth of carbon nanotubes by thermal chemical vapor deposition, Appl. Phys. Lett. 89, 183113 (2006)

    Article  CAS  Google Scholar 

  62. R. Philippe, A. Moranqais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp: Catalytic production of carbon nanotubes by fluidized-bed CVD, Chem. Vap. Depos. 13(9), 447–457 (2007)

    Article  CAS  Google Scholar 

  63. M. Meyyappan: A review of plasma enhanced chemical vapour deposition of carbon nanotubes, J. Phys. D 42(21), 15 (2009)

    Article  CAS  Google Scholar 

  64. Y.Q. Xu, E. Flor, H. Schmidt, R.E. Smalley, R.H. Hauge: Effects of atomic hydrogen and active carbon species in 1 mm vertically aligned single-walled carbon nanotube growth, Appl. Phys. Lett. 89(12), 3 (2006)

    Google Scholar 

  65. C.L. Pint, G.B. Bozzolo, R. Hauge: Catalyst design for carbon nanotube growth using atomistic modeling, Nanotechnology 19, 405704 (2008)

    Article  CAS  Google Scholar 

  66. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283(5401), 512–514 (1999)

    Article  CAS  Google Scholar 

  67. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306(5700), 1362–1364 (2004)

    Article  CAS  Google Scholar 

  68. Y. Murakami, S. Chiashi, Y. Miyauchi, M.H. Hu, M. Ogura, T. Okubo, S. Maruyama: Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy, Chem. Phys. Lett. 385(3/4), 298–303 (2004)

    Article  CAS  Google Scholar 

  69. S. Yasuda, D.N. Futaba, T. Yamada, J. Satou, A. Shibuya, H. Takai, K. Arakawa, M. Yumura, K. Hata: Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction, ACS Nano 3(12), 4164–4170 (2009)

    Article  CAS  Google Scholar 

  70. G.D. Nessim, M. Seita, K.P. OʼBrien, A.J. Hart, R.K. Bonaparte, R.R. Mitchell, C.V. Thompson: Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock, Nano Lett. 9(10), 3398–3405 (2009)

    Article  CAS  Google Scholar 

  71. R.F. Wood, S. Pannala, J.C. Wells, A.A. Puretzky, D.B. Geohegan: Simple model of the interrelation between single- and multiwall carbon nanotube growth rates for the CVD process, Phys. Rev. B 75(23), 8 (2007)

    Article  CAS  Google Scholar 

  72. S.M. Kim, C.L. Pint, P.B. Amama, D.N. Zakharov, R.H. Hauge, B. Maruyama, E.A. Stach: Evolution in catalyst morphology leads to carbon nanotube growth termination, J. Phys. Chem. Lett. 1(6), 918–922 (2010)

    Article  CAS  Google Scholar 

  73. A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres: In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A 81, 223–240 (2005)

    Article  CAS  Google Scholar 

  74. T. Ogawa, T. Takagahara: Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system, Phys. Rev. B 43, 14325–14328 (1991)

    Article  Google Scholar 

  75. T. Ogawa, T. Takagahara: Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects, Phys. Rev. B 44, 8138–8156 (1991)

    Article  Google Scholar 

  76. M.J. OʼConnell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Hároz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593–596 (2002)

    Article  Google Scholar 

  77. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361–2366 (2002)

    Article  CAS  Google Scholar 

  78. S. Lebedkin, F. Hennrich, T. Skipa, M.M. Kappes: Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method, J. Phys. Chem. B 107, 1949–1956 (2003)

    Article  CAS  Google Scholar 

  79. J. Lefebvre, Y. Homma, P. Finnie: Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes, Phys. Rev. Lett. 90, 217401 (2003)

    Article  CAS  Google Scholar 

  80. R.B. Weisman, S.M. Bachilo: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot, Nano Lett. 3, 1235–1238 (2003)

    Article  CAS  Google Scholar 

  81. Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama: Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol, Chem. Phys. Lett. 387, 198–203 (2004)

    Article  CAS  Google Scholar 

  82. O.N. Torrens, D.E. Milkie, M. Zheng, J.M. Kikkawa: Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles, Nano Lett. 6, 2864–2867 (2006)

    Article  CAS  Google Scholar 

  83. P.H. Tan, A.G. Rozhin, T. Hasan, P. Hu, V. Scardaci, W.I. Milne, A.C. Ferrari: Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer, Phys. Rev. Lett. 99, 137402 (2007)

    Article  CAS  Google Scholar 

  84. O. Kiowski, K. Arnold, S. Lebedkin, F. Hennrich, M.M. Kappes: Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 99, 237402 (2007)

    Article  CAS  Google Scholar 

  85. O.N. Torrens, M. Zheng, J.M. Kikkawa: Energy of k-momentum dark excitons in carbon nanotubes by optical spectroscopy, Phys. Rev. Lett. 101(15), 157401 (2008)

    Article  CAS  Google Scholar 

  86. Y. Murakami, J. Kono: Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: Exploring the upper density limit of one-dimensional excitons, Phys. Rev. Lett. 102, 037401 (2009)

    Article  CAS  Google Scholar 

  87. Y. Murakami, J. Kono: Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton–exciton annihilation: Experiment and theory, Phys. Rev. B 80, 035432 (2009)

    Article  CAS  Google Scholar 

  88. J.A. Fagan, J.Y. Huh, J.R. Simpson, J.L. Blackburn, J.M. Holt, B.A. Larsen, A.R. Hight Walker: Separation of empty and water-filled single-wall carbon nanotubes, ACS Nano 5, 3943–3953 (2011)

    Article  CAS  Google Scholar 

  89. A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito: G-band resonant Raman study of 62 isolated single-wall carbon nanotubes, Phys. Rev. B 65, 155412 (2002)

    Article  CAS  Google Scholar 

  90. H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen: Chirality distribution and transition energies of carbon nanotubes, Phys. Rev. Lett. 93, 177401 (2004)

    Article  CAS  Google Scholar 

  91. S.K. Doorn, D.A. Heller, P.W. Barone, M.L. Usrey, M.S. Strano: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution, Appl. Phys. A 78, 1147–1155 (2004)

    Article  CAS  Google Scholar 

  92. C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta: Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects, Phys. Rev. Lett. 93, 147406 (2004)

    Article  CAS  Google Scholar 

  93. J. Maultzsch, H. Telg, S. Reich, C. Thomsen: Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment, Phys. Rev. B 72, 205438 (2005)

    Article  CAS  Google Scholar 

  94. S.K. Doorn, M.J. OʼConnell, L. Zheng, Y.T. Zhu, S. Huang, J. Liu: Raman spectral imaging of a carbon nanotube intramolecular junction, Phys. Rev. Lett. 94, 016802 (2005)

    Article  CAS  Google Scholar 

  95. J. Jiang, R. Saito, A. Grüneis, S.G. Chou, G.G. Samsonidze, A. Jorio, G. Dresselhaus, M.S. Dresselhaus: Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes, Phys. Rev. B 71, 205420 (2005)

    Article  CAS  Google Scholar 

  96. J.C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G.S. Duesberg, S. Roth, J.-L. Sauvajol: Raman modes of index-identified freestanding single-walled carbon nanotubes, Phys. Rev. Lett. 95, 217401 (2005)

    Article  CAS  Google Scholar 

  97. A. Jorio, C. Fantini, M.A. Pimenta, R.B. Capaz, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, J. Jiang, N. Kobayashi, A. Grüneis, R. Saito: Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes, Phys. Rev. B 71, 075401 (2005)

    Article  CAS  Google Scholar 

  98. M. Paillet, T. Michel, J.C. Meyer, V.N. Popov, L. Henrard, S. Roth, J.-L. Sauvajol: Raman active phonons of identified semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 96, 257401 (2006)

    Article  CAS  Google Scholar 

  99. H. Son, A. Reina, G.G. Samsonidze, R. Saito, A. Jorio, M.S. Dresselhaus, J. Kong: Raman characterization of electronic transition energies of metallic single-wall carbon nanotubes, Phys. Rev. B 74, 073406 (2006)

    Article  CAS  Google Scholar 

  100. Y. Yin, A.N. Vamivakas, A.G. Walsh, S.B. Cronin, M.S. Ünlü, B.B. Goldberg, A.K. Swan: Optical determination of electron-phonon coupling in carbon nanotubes, Phys. Rev. Lett. 98, 037404 (2007)

    Article  CAS  Google Scholar 

  101. F. Wang, W. Liu, Y. Wu, M.Y. Sfeir, L. Huang, J. Hone, S. OʼBrien, L.E. Brus, T.F. Heinz, Y.R. Shen: Multiphonon Raman scattering from individual single-walled carbon nanotubes, Phys. Rev. Lett. 98, 047402 (2007)

    Article  CAS  Google Scholar 

  102. K.T. Nguyen, A. Gaur, M. Shim: Fano lineshape and phonon softening in single isolated metallic carbon nanotubes, Phys. Rev. Lett. 98, 145504 (2007)

    Article  CAS  Google Scholar 

  103. Y. Wu, J. Maultzsch, E. Knoesel, B. Chandra, M. Huang, M.Y. Sfeir, L.E. Brus, J. Hone, T.F. Heinz: Variable electron-phonon coupling in isolated metallic carbon nanotubes observed by Raman scattering, Phys. Rev. Lett. 99, 027402 (2007)

    Article  CAS  Google Scholar 

  104. H. Farhat, H. Son, G.G. Samsonidze, S. Reich, M.S. Dresselhaus, J. Kong: Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly, Phys. Rev. Lett. 99, 145506 (2007)

    Article  CAS  Google Scholar 

  105. J.C. Tsang, M. Freitag, V. Perebeinos, J. Liu, P. Avouris: Doping and phonon renormalization in carbon nanotubes, Nat. Nanotechnol. 2, 725–730 (2007)

    Article  CAS  Google Scholar 

  106. M. Oron-Carl, R. Krupke: Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes, Phys. Rev. Lett. 100, 127401 (2008)

    Article  CAS  Google Scholar 

  107. M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T.F. Heinz, C. Thomsen: Longitudinal optical phonons in metallic and semiconducting carbon nanotubes, Phys. Rev. Lett. 102, 075501 (2009)

    Article  CAS  Google Scholar 

  108. T. Michel, M. Paillet, D. Nakabayashi, M. Picher, V. Jourdain, J.C. Meyer, A.A. Zahab, J.-L. Sauvajol: Indexing of individual single-walled carbon nanotubes from Raman spectroscopy, Phys. Rev. B 80, 245416 (2009)

    Article  CAS  Google Scholar 

  109. E.H. Hároz, W.D. Rice, B.Y. Lu, S. Ghosh, R.H. Hauge, R.B. Weisman, S.K. Doorn, J. Kono: Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence, ACS Nano 4, 1955–1962 (2010)

    Article  CAS  Google Scholar 

  110. J.G. Duque, H. Chen, A.K. Swan, A.P. Shreve, S. Kilina, S. Tretiak, X. Tu, M. Zheng, S.K. Doorn: Violation of the Condon approximation in semiconducting carbon nanotubes, ACS Nano 5, 5233–5241 (2011)

    Article  CAS  Google Scholar 

  111. G.N. Ostojic, S. Zaric, J. Kono, M.S. Strano, V.C. Moore, R.H. Hauge, R.E. Smalley: Interband recombination dynamics of resonantly-excited single-walled carbon nanotubes, Phys. Rev. Lett. 92, 117402 (2004)

    Article  CAS  Google Scholar 

  112. L. Huang, H.N. Pedrosa, T.D. Krauss: Ultrafast ground-state recovery of single-walled carbon nanotubes, Phys. Rev. Lett. 93, 017403 (2004)

    Article  CAS  Google Scholar 

  113. J. Kono, G.N. Ostojic, S. Zaric, M.S. Strano, V.C. Moore, J. Shaver, R.H. Hauge, R.E. Smalley: Ultrafast optical spectroscopy of micelle-suspended single-walled carbon nanotubes, Appl. Phys. A 78, 1093–1098 (2004)

    Article  CAS  Google Scholar 

  114. A. Hagen, G. Moos, V. Talalaev, T. Hertel: Electronic structure and dynamics of optically excited single-wall carbon nanotubes, Appl. Phys. A 78, 1137 (2004)

    Article  CAS  Google Scholar 

  115. Y.-Z. Ma, J. Stenger, J. Zimmerman, S.M. Bachilo, R.E. Smalley, R.B. Weisman, G.R. Fleming: Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy, J. Chem. Phys. 120, 3368 (2004)

    Article  CAS  Google Scholar 

  116. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz: Time-resolved fluorescence in carbon nanotubes and its implication for radiative lifetimes, Phys. Rev. Lett. 92, 177402 (2004)

    Article  CAS  Google Scholar 

  117. R.J. Ellingson, C. Engtrakul, M. Jones, M. Samec, G. Rumbles, A.J. Nozik, M.J. Heben: Ultrafast photoresponse of metallic and semiconducting single-wall carbon nanotubes, Phys. Rev. B 71, 115444 (2005)

    Article  CAS  Google Scholar 

  118. S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M.S. Strano: Excited-state carrier lifetime in single-walled carbon nanotubes, Phys. Rev. B 71, 033402 (2005)

    Article  CAS  Google Scholar 

  119. F. Wang, G. Dukovic, E. Knoesel, L.E. Brus, T.F. Heinz: Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes, Phys. Rev. B 70, 241403 (2004)

    Article  CAS  Google Scholar 

  120. A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, H. Okamoto: Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations, Phys. Rev. Lett. 94, 047404 (2005)

    Article  CAS  Google Scholar 

  121. C.-X. Sheng, Z.V. Vardeny, B. Dalton, R.H. Baughman: Exciton dynamics in single-walled nanotubes: Transient photoinduced dichroism and polarized emission, Phys. Rev. B 71, 125427 (2005)

    Article  CAS  Google Scholar 

  122. S.G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich, H.B. Ribeiro, A. Jorio, M.A. Pimenta, G.G. Samsonidze, A.P. Santos, M. Zheng, G.B. Onoa, E.D. Semke, G. Dresselhaus, M.S. Dresselhaus: Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy, Phys. Rev. Lett. 94, 127402 (2005)

    Article  CAS  Google Scholar 

  123. Y.-Z. Ma, L. Valkunas, S.L. Dexheimer, S.M. Bachilo, G.R. Fleming: Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation, Phys. Rev. Lett. 94, 157402 (2005)

    Article  CAS  Google Scholar 

  124. C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. Lanzani, G. Cerullo: Intersubband exciton relaxation dynamics in single-walled carbon nanotubes, Phys. Rev. Lett. 94, 207401 (2005)

    Article  CAS  Google Scholar 

  125. J.S. Lauret, C. Voisin, S. Berger, G. Cassabois, C. Delalande, P. Roussignol, L. Goux-Capes, A. Filoramo: Environmental effects on the carrier dynamics in carbon nanotubes, Phys. Rev. B 72, 113413 (2005)

    Article  CAS  Google Scholar 

  126. A. Hagen, M. Steiner, M.B. Raschke, C. Lienau, T. Hertel, H. Qian, A.J. Meixner, A. Hartschuh: Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes, Phys. Rev. Lett. 95, 197401 (2005)

    Article  CAS  Google Scholar 

  127. S.G. Chou, M.F. DeCamp, J. Jiang, G.G. Samsonidze, E.B. Barros, F. Plentz, A. Jorio, M. Zheng, G.B. Onoa, E.D. Semke, A. Tokmakoff, R. Saito, G. Dresselhaus, M.S. Dresselhaus: Phonon-assisted exciton relaxation dynamics for a (6,5)-enriched DNA-wrapped single-walled carbon nanotube sample, Phys. Rev. B 72, 195415 (2005)

    Article  CAS  Google Scholar 

  128. G.N. Ostojic, S. Zaric, J. Kono, V.C. Moore, R.H. Hauge, R.E. Smalley: Stability of high-density one-dimensional excitons in carbon nanotubes under high laser excitation, Phys. Rev. Lett. 94, 097401 (2005)

    Article  CAS  Google Scholar 

  129. A. Gambetta, C. Manzoni, E. Menna, M. Meneghetti, G. Cerullo, G. Lanzani, S. Tretiak, A. Piryatinski, A. Saxena, R.L. Martin, A.R. Bishop: Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes, Nat. Phys. 2, 515–520 (2006)

    Article  CAS  Google Scholar 

  130. Y.-S. Lim, K.-J. Yee, J.-H. Kim, J. Shaver, E.H. Hároz, J. Kono, S.K. Doorn, R.H. Hauge, R.E. Smalley: Coherent lattice vibrations in carbon nanotubes, Nano Lett. 6, 2696–2700 (2006)

    Article  CAS  Google Scholar 

  131. Y. Hashimoto, Y. Murakami, S. Maruyama, J. Kono: Anisotropic decay dynamics of photoexcited aligned carbon nanotube bundles, Phys. Rev. B 75, 245408 (2007)

    Article  CAS  Google Scholar 

  132. D. Song, F. Wang, G. Dukovic, M. Zheng, E.D. Semke, L.E. Brus, T.F. Heinz: Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes, Phys. Rev. Lett. 100, 225503 (2008)

    Article  CAS  Google Scholar 

  133. K. Kang, T. Ozel, D.G. Cahill, M. Shim: Optical phonon lifetimes in single-walled carbon nanotubes by time-resolved Raman scattering, Nano Lett. 8, 4642–4647 (2008)

    Article  CAS  Google Scholar 

  134. J.-H. Kim, K.-J. Han, N.-J. Kim, K.-J. Yee, Y.-S. Lim, G.D. Sanders, C.J. Stanton, L.G. Booshehri, E.H. Hároz, J. Kono: Chirality-selective excitations of coherent phonons in carbon nanotubes by femtosecond optical pulses, Phys. Rev. Lett. 102, 037402 (2009)

    Article  CAS  Google Scholar 

  135. L. Lüer, C. Gadermaier, J. Crochet, T. Hertel, D. Brida, G. Lanzani: Coherent phonon dynamics in semiconducting carbon nanotubes: A quantitative study of electron-phonon coupling, Phys. Rev. Lett. 102, 127401 (2009)

    Article  CAS  Google Scholar 

  136. I. Chatzakis, H. Yan, D. Song, S. Berciaud, T.F. Heinz: Temperature dependence of the anharmonic decay of optical phonons in carbon nanotubes and graphite, Phys. Rev. B 83, 205411 (2011)

    Article  CAS  Google Scholar 

  137. J.-H. Kim, K.-J. Yee, Y.-S. Lim, L.G. Booshehri, E.H. Hároz, J. Kono: Optical phonon dephasing in single-walled carbon nanotubes probed via impulsive stimulated Raman scattering, Phys. Rev. B 86, 161415(R) (2011)

    Article  CAS  Google Scholar 

  138. D.T. Nguyen, C. Voisin, P. Roussignol, C. Roquelet, J.S. Lauret, G. Cassabois: Elastic exciton–exciton scattering in photoexcited carbon nanotubes, Phys. Rev. Lett. 107, 127401 (2011)

    Article  CAS  Google Scholar 

  139. S.M. Santos, B. Yuma, S. Berciaud, J. Shaver, M. Gallart, P. Gilliot, L. Cognet, B. Lounis: All-optical trion generation in single-walled carbon nanotubes, Phys. Rev. Lett. 107, 187401 (2011)

    Article  CAS  Google Scholar 

  140. J.J. Crochet, S. Hoseinkhani, L. Lüer, T. Hertel, S.K. Doorn, G. Lanzani: Free-carrier generation in aggregates of single-wall carbon nanotubes by photoexcitation in the ultraviolet regime, Phys. Rev. Lett. 107, 257402 (2011)

    Article  CAS  Google Scholar 

  141. M. Freitag, Y. Martin, J.A. Misewich, R. Martel, P. Avouris: Photoconductivity of single carbon nanotubes, Nano Lett. 3, 1067–1071 (2003)

    Article  CAS  Google Scholar 

  142. A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny: High-resolution near-field raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90, 095503 (2003)

    Article  CAS  Google Scholar 

  143. J.A. Misewich, R. Martel, P. Avouris, J.C. Tsang, S. Heinze, J. Tersoff: Electrically induced optical emission from a carbon nanotube FET, Science 300, 783–786 (2003)

    Article  CAS  Google Scholar 

  144. A. Hartschuh, H.N. Pedrosa, L. Novotny, T.D. Krauss: Simultaneous fluorescence and Raman scattering from single carbon nanotubes, Science 301, 1354–1356 (2003)

    Article  CAS  Google Scholar 

  145. J. Lefebvre, J.M. Fraser, P. Finnie, Y. Homma: Photoluminescence from an individual single-walled carbon nanotube, Phys. Rev. B 69, 075403 (2004)

    Article  CAS  Google Scholar 

  146. H. Htoon, M.J. OʼConnell, P.J. Cox, S.K. Doorn, V.I. Klimov: Low temperature emission spectra of individual single-walled carbon nanotubes: Multiplicity of subspecies within single-species nanotube ensembles, Phys. Rev. Lett. 93, 027401 (2004)

    Article  CAS  Google Scholar 

  147. K. Matsuda, Y. Kanemitsu, K. Irie, T. Saiki, T. Someya, Y. Miyauchi, S. Maruyama: Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature, Appl. Phys. Lett. 86, 123116 (2005)

    Article  CAS  Google Scholar 

  148. K. Balasubramanian, M. Burghard, K. Kern, M. Scolari, A. Mews: Photocurrent imaging of charge transport barriers in carbon nanotube devices, Nano Lett. 5, 507–510 (2005)

    Article  CAS  Google Scholar 

  149. H. Htoon, M.J. OʼConnell, S.K. Doorn, V.I. Klimov: Single carbon nanotubes probed by photoluminescence excitation spectroscopy: The role of phonon-assisted transitions, Phys. Rev. Lett. 94, 127403 (2005)

    Article  CAS  Google Scholar 

  150. J.U. Lee: Photovoltaic effect in ideal carbon nanotube diodes, Appl. Phys. Lett. 87, 073101 (2005)

    Article  CAS  Google Scholar 

  151. J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, P. Avouris: Bright infrared emission from electrically induced excitons in carbon nanotubes, Science 310, 1171–1174 (2005)

    Article  CAS  Google Scholar 

  152. J.U. Lee, P.J. Codella, M. Pietrzykowski: Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes, Appl. Phys. Lett. 90, 053103 (2007)

    Article  CAS  Google Scholar 

  153. L. Cognet, D.A. Tsyboulski, J.-D.R. Rocha, C.D. Doyle, J.M. Tour, R.B. Weisman: Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions, Science 316, 1465–1468 (2007)

    Article  CAS  Google Scholar 

  154. A. Högele, C. Galland, M. Winger, A. Imamoğlu: Photon antibunching in the photoluminescence spectra of a single carbon nanotube, Phys. Rev. Lett. 100, 217401 (2008)

    Article  CAS  Google Scholar 

  155. C. Galland, A. Högele, H.E. Türeci, A. Imamoğlu: Non-Markovian decoherence of localized nanotube excitons by acoustic phonons, Phys. Rev. Lett. 101, 067402 (2008)

    Article  CAS  Google Scholar 

  156. A. Srivastava, H. Htoon, V.I. Klimov, J. Kono: Direct observation of dark excitons in individual carbon nanotubes: Inhomogeneity in the exchange splitting, Phys. Rev. Lett. 101, 087402 (2008)

    Article  CAS  Google Scholar 

  157. R. Matsunaga, K. Matsuda, Y. Kanemitsu: Evidence for dark excitons in a single carbon nanotube due to the Aharonov–Bohm effect, Phys. Rev. Lett. 101, 147404 (2008)

    Article  CAS  Google Scholar 

  158. K. Matsuda, T. Inoue, Y. Murakami, S. Maruyama, Y. Kanemitsu: Exciton dephasing and multiexciton recombinations in a single carbon nanotube, Phys. Rev. B 77, 033406 (2008)

    Article  CAS  Google Scholar 

  159. N.M. Gabor, Z. Zhong, K. Bosnick, J. Park, P.L. McEuen: Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes, Science 325, 1367–1371 (2009)

    Article  CAS  Google Scholar 

  160. M. Steiner, M. Freitag, V. Perebeinos, A. Naumov, J.P. Small, A.A. Bol, P. Avouris: Gate-variable light absorption and emission in a semiconducting carbon nanotube, Nano Lett. 9, 3477–3481 (2009)

    Article  CAS  Google Scholar 

  161. R. Matsunaga, Y. Miyauchi, K. Matsuda, Y. Kanemitsu: Symmetry-induced nonequilibrium distributions of bright and dark exciton states in single carbon nanotubes, Phys. Rev. B 80, 115436 (2009)

    Article  CAS  Google Scholar 

  162. M. Freitag, M. Steiner, A. Naumov, J.P. Small, A.A. Bol, V. Perebeinos, P. Avouris: Carbon nanotube photo- and electroluminescence in longitudinal electric fields, ACS Nano 3, 3744–3748 (2009)

    Article  CAS  Google Scholar 

  163. S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, Y.K. Kato: Exciton diffusion in air-suspended single-walled carbon nanotubes, Phys. Rev. Lett. 104, 247402 (2010)

    Article  CAS  Google Scholar 

  164. S. Zaric, G.N. Ostojic, J. Kono, J. Shaver, V.C. Moore, M.S. Strano, R.H. Hauge, R.E. Smalley, X. Wei: Optical signatures of the Aharonov–Bohm phase in single-walled carbon nanotubes, Science 304, 1129–1131 (2004)

    Article  CAS  Google Scholar 

  165. S. Zaric, G.N. Ostojic, J. Shaver, J. Kono, O. Portugall, P.H. Frings, G.L.J.A. Rikken, M. Furis, S.A. Crooker, X. Wei, V.C. Moore, R.H. Hauge, R.E. Smalley: Excitons in carbon nanotubes with broken time-reversal symmetry, Phys. Rev. Lett. 96, 016406 (2006)

    Article  CAS  Google Scholar 

  166. J. Shaver, J. Kono, O. Portugall, V. Krstic, G.L.J.A. Rikken, Y. Miyauchi, S. Maruyama, V. Perebeinos: Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking, Nano Lett. 7, 1851–1855 (2007)

    Article  CAS  Google Scholar 

  167. I.B. Mortimer, R.J. Nicholas: Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes, Phys. Rev. Lett. 98, 027404 (2007)

    Article  CAS  Google Scholar 

  168. J. Shaver, J. Kono: Temperature dependent magneto-photoluminescence spectroscopy of carbon nanotubes: Evidence for dark excitons, Laser Photonics Rev. 1, 260–274 (2007)

    Article  CAS  Google Scholar 

  169. J. Shaver, S.A. Crooker, J.A. Fagan, E.K. Hobbie, N. Ubrig, O. Portugall, V. Perebeinos, P. Avouris, J. Kono: Magneto-optical spectroscopy of highly-aligned carbon nanotubes: Identifying the role of threading magnetic flux, Phys. Rev. B 78, 081402 (2008)

    Article  CAS  Google Scholar 

  170. J. Shaver, A.N.G. Parra-Vasquez, S. Hansel, O. Portugall, C.H. Mielke, M. von Ortenberg, R.H. Hauge, M. Pasquali, J. Kono: Alignment dynamics of carbon nanotubes in pulsed ultrahigh magnetic fields, ACS Nano 3, 131 (2009)

    Article  CAS  Google Scholar 

  171. R.S. Knox: Theory of Excitons, Solid State Physics, Vol. 5 (Academic, New York 1963)

    Google Scholar 

  172. R. Loudon: One-dimensional hydrogen atom, Am. J. Phys. 27, 649 (1959)

    CAS  Google Scholar 

  173. R.J. Elliot, R. Loudon: Theory of the absorption edge in semiconductors in a high magnetic field, J. Phys. Chem. Solids 15, 196–207 (1960)

    Article  Google Scholar 

  174. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005)

    Article  CAS  Google Scholar 

  175. J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M.S. Strano, C. Thomsen, C. Lienau: Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B 72, 241402 (2005)

    Article  CAS  Google Scholar 

  176. S. Uryu, T. Ando: Exciton absorption of perpendicularly polarized light in carbon nanotubes, Phys. Rev. B 74, 155411 (2006)

    Article  CAS  Google Scholar 

  177. S. Uryu, T. Ando: Cross-polarized exciton absorption in carbon nanotubes with Aharonov–Bohm flux, Phys. Rev. B 76, 115420 (2007)

    Article  CAS  Google Scholar 

  178. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba: Optical properties of single-wall carbon nanotubes, Synth. Met. 103, 2555–2558 (1999)

    Article  CAS  Google Scholar 

  179. S. Berciaud, L. Cognet, P. Poulin, R.B. Weisman, B. Lounis: Absorption spectroscopy of individual single-walled carbon nanotubes, Nano Lett. 7, 1203–1207 (2007)

    Article  CAS  Google Scholar 

  180. F. Wang, D.J. Cho, B. Kessler, J. Deslippe, P.J. Schuck, S.G. Louie, A. Zettl, T.F. Heinz, Y.R. Shen: Observation of excitons in one-dimensional metallic single-walled carbon nanotubes, Phys. Rev. Lett. 99, 227401 (2007)

    Article  CAS  Google Scholar 

  181. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus: Diameter-selective Raman scattering from virbrational modes in carbon nanotubes, Science 275, 187–191 (1997)

    Article  CAS  Google Scholar 

  182. A. Jorio, M.S. Dresselhaus, R. Saito, G.F. Dresselhaus: Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, Weinheim 2011)

    Book  Google Scholar 

  183. M.J. OʼConnell, S. Sivaram, S.K. Doorn: Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed HiPco nanotubes, Phys. Rev. B 69, 235415 (2004)

    Article  CAS  Google Scholar 

  184. A. Jorio, A.P. Santos, H.B. Ribeiro, C. Fantini, M. Souza, J.P.M. Viera, C.A. Furtado, J. Jiang, R. Saito, L. Balzano, D.E. Resasco, M.A. Pimenta: Quantifying carbon-nanotube species with resonance Raman scattering, Phys. Rev. B 72, 075207 (2005)

    Article  CAS  Google Scholar 

  185. H. Telg, J. Maultzsch, C. Thomsen: Raman Intensities of the Radial-Breathing Mode in Carbon Nanotubes: The Exciton-Phonon Coupling as a Function of (n1, n2), J. Nanophoton. 4, 041660 (2012)

    Article  CAS  Google Scholar 

  186. E.H. Hároz, J.G. Duque, X. Tu, M. Zheng, A.R. Hight Walker, R.H. Hauge, S.K. Doorn, J. Kono: Fundamental optical processes in armchair carbon nanotubes, Nanoscale 5(4), 1411–1411 (2012)

    Article  CAS  Google Scholar 

  187. M.A. Pimenta, A. Marucci, S.A. Empedocles, M.G. Bawendi, E.B. Hanlon, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus: Raman modes of metallic carbon nanotubes, Phys. Rev. B 58(24), R16016–R16019 (1998)

    Article  CAS  Google Scholar 

  188. S.D.M. Brown, A. Jorio, M.S. Dresselhaus, G. Dresselhaus: Observations of the D-band feature in the Raman spectra of carbon nanotubes, Phys. Rev. B 64(7), 073403 (2001)

    Article  CAS  Google Scholar 

  189. S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari, F. Mauri: Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects, Phys. Rev. B 75(3), 035427 (2007)

    Article  CAS  Google Scholar 

  190. E.H. Hároz, J.G. Duque, W.D. Rice, C.G. Densmore, J. Kono, S.K. Doorn: Resonant Raman spectroscopy of armchair carbon nanotubes: Absence of broad G feature, Phys. Rev. B 84(12), 121403 (2011)

    Article  CAS  Google Scholar 

  191. A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 388, 257 (1997)

    Article  CAS  Google Scholar 

  192. S.B. Cronin, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.S. Dresselhaus, M. Tinkham: Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain, Phys. Rev. B 72, 035425 (2005)

    Article  CAS  Google Scholar 

  193. S. Berciaud, C. Voisin, H. Yan, B. Chandra, R. Caldwell, Y. Shan, L.E. Brus, J. Hone, T.F. Heinz: Excitons and high-order optical transitions in individual carbon nanotubes: A Rayleigh scattering spectroscopy study, Phys. Rev. B 81, 041414 (2010)

    Article  CAS  Google Scholar 

  194. A.G. Souza Filho, A. Jorio, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Ünlü, B.B. Goldberg, R. Saito, J.H. Hafner, C.M. Lieber, M.A. Pimenta: Probing the electronic trigonal warping effect in inidividual single-wall carbon nanotubes using phonon spectra, Chem. Phys. Lett. 354, 62–68 (2002)

    Article  CAS  Google Scholar 

  195. M.Y. Sfeir, F. Wang, L. Huang, C.C. Chuang, J. Hone, S.P. OʼBrien, T.F. Heinz, L.E. Brus: Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering, Science 306, 1540 (2004)

    Article  CAS  Google Scholar 

  196. M.Y. Sfeir, T. Beetz, F. Wang, L. Huang, X.M.H. Huang, M. Huang, J. Hone, S. OʼBrien, J.A. Misewich, T.F. Heinz, L. Wu, Y. Zhu, L.E. Brus: Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure, Science 312, 554–556 (2006)

    Article  CAS  Google Scholar 

  197. K. Liu, J. Deslippe, F. Xiao, R.B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S.G. Louie, E. Wang, F. Wang: An atlas of carbon nanotube optical transitions, Nat. Nanotechnol. 7, 325–329 (2012)

    Article  CAS  Google Scholar 

  198. D.Y. Joh, L.H. Herman, S.-Y. Ju, J. Kinder, M.A. Segal, J.N. Johnson, G.K.L. Chan, J. Park: On-chip Rayleigh imaging and spectroscopy of carbon nanotubes, Nano Lett. 11, 1–7 (2011)

    Article  CAS  Google Scholar 

  199. T. Hertel, G. Moos: Electron–phonon interaction in single-wall carbon nanotubes: A time-domain study, Phys. Rev. Lett. 84, 5002 (2000)

    Article  CAS  Google Scholar 

  200. J.-H. Kim, J. Park, B.Y. Lee, D. Lee, K.-J. Yee, Y.-S. Lim, L.G. Booshehri, E.H. Hároz, J. Kono, S.-H. Baik: Polarization anisotropy of transient carrier and phonon dynamics in carbon nanotubes, J. Appl. Phys. 105, 103506 (2009)

    Article  CAS  Google Scholar 

  201. J. Wang, M.W. Graham, Y.-Z. Ma, G.R. Fleming, R.A. Kaindl: Ultrafast spectroscopy of midinfrared internal exciton transitions in seperated single-walled carbon nanotubes, Phys. Rev. Lett. 104, 177401 (2010)

    Article  CAS  Google Scholar 

  202. B. Gao, G.B. Hartland, L. Huang: Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes, ACS Nano 6, 5083 (2012)

    Article  CAS  Google Scholar 

  203. J.S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, L. Capes: Ultrafast carrier dynamics in single-wall carbon nanotubes, Phys. Rev. Lett. 90, 057404 (2003)

    Article  CAS  Google Scholar 

  204. K. Kato, K. Ishioka, M. Kitajima, J. Tang, R. Saito, H. Petek: Coherent phonon anisotropy in aligned single-walled carbon nanotubes, Nano Lett. 8, 3102–3108 (2008)

    Article  CAS  Google Scholar 

  205. L.G. Booshehri, C.L. Pint, G.D. Sanders, L. Ren, C. Sun, E.H. Hároz, J.-H. Kim, K.-J. Yee, Y.-S. Lim, R.H. Hauge, C.J. Stanton, J. Kono: Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes, Phys. Rev. B 83, 195411 (2011)

    Article  CAS  Google Scholar 

  206. Y.-S. Lim, K.-J. Yee, J.-H. Kim, E.H. Hároz, J. Shaver, J. Kono, S.K. Doorn, R.H. Hauge, R.E. Smalley: Chirality assignment of micelle-suspended single-walled carbon nanotubes using coherent phonon oscillations, J. Korean Phys. Soc. 51, 306 (2007)

    Article  CAS  Google Scholar 

  207. A.M. Weiner, J.P. Heritage, E.M. Kirschner: High-resolution femtosecond pulse shaping, J. Opt. Soc. Am. B 5(8), 1563 (1988)

    Article  CAS  Google Scholar 

  208. R.J. Elliot, R. Loudon: Theory of fine structure on the absorption edge in semiconductors, J. Phys. Chem. Solids 8, 382–388 (1959)

    Article  Google Scholar 

  209. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio: Exciton photophysics of carbon nanotubes, Annu. Rev. Phys. Chem. 58, 719–747 (2007)

    Article  CAS  Google Scholar 

  210. T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066–1073 (1997)

    Article  CAS  Google Scholar 

  211. T. Ando: Excitons in carbon nanotubes revisited: Dependence on diameter, Aharonov–Bohm flux, and strain, J. Phys. Soc. Jpn. 73, 3351–3363 (2004)

    Article  CAS  Google Scholar 

  212. T.G. Pedersen: Variational approach to excitons in carbon nanotubes, Phys. Rev. B 67, 073401 (2003)

    Article  CAS  Google Scholar 

  213. C.L. Kane, E.J. Mele: Ratio problem in single carbon nanotube fluorescence spectroscopy, Phys. Rev. Lett. 90, 207401 (2003)

    Article  CAS  Google Scholar 

  214. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie: Excitonic effects and optical spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 92, 077402 (2004)

    Article  CAS  Google Scholar 

  215. E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in carbon nanotubes: An ab initio symmetry-based approach, Phys. Rev. Lett. 92, 196401 (2004)

    Article  CAS  Google Scholar 

  216. T.G. Pederson: Exciton effects in carbon nanotubes, Carbon 42, 1007 (2004)

    Article  CAS  Google Scholar 

  217. V. Perebeinos, J. Tersoff, P. Avouris: Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004)

    Article  CAS  Google Scholar 

  218. C.L. Kane, E.J. Mele: Electron interactions and scaling relations for optical excitations in carbon nanotubes, Phys. Rev. Lett. 93, 197402 (2004)

    Article  CAS  Google Scholar 

  219. H. Zhao, S. Mazumdar: Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 93, 157402 (2004)

    Article  CAS  Google Scholar 

  220. E. Chang, G. Bussi, A. Ruini, E. Molinari: First-principles approach for the calculation of optical properties of one-dimensional systems with helical symmetry: The case of carbon nanotubes, Phys. Rev. B 72, 195423 (2005)

    Article  CAS  Google Scholar 

  221. V. Perebeinos, J. Tersoff, P. Avouris: Radiative lifetime of excitons in carbon nanotubes, Nano Lett. 5, 2495–2499 (2005)

    Article  CAS  Google Scholar 

  222. C.D. Spataru, S. Ismail-Beigi, R.B. Capaz, S.G. Louie: Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes, Phys. Rev. Lett. 95, 247402 (2005)

    Article  CAS  Google Scholar 

  223. T. Ando: Effects of valley mixing and exchange on excitons in carbon nanotubes with Aharonov–Bohm flux, J. Phys. Soc. Jpn. 75, 024707 (2006)

    Article  CAS  Google Scholar 

  224. J. Deslippe, C.D. Spataru, D. Prendergast, S.G. Louie: Bound excitons in metallic single-walled carbon nanotubes, Nano Lett. 7, 1626–1630 (2007)

    Article  CAS  Google Scholar 

  225. S. Kilina, S. Tretiak, S.K. Doorn, Z. Luo, F. Papadimitrakopoulos, A. Piryatinski, A. Saxena, A.R. Bishop: Cross-polarized excitons in carbon nanotubes, Proc. Natl. Acad. Sci. USA 105, 6797–6802 (2008)

    Article  CAS  Google Scholar 

  226. S. Uryu, T. Ando: Excitons in metallic carbon nanotubes with Aharonov–Bohm flux, Phys. Rev. B 77, 205407 (2008)

    Article  CAS  Google Scholar 

  227. P.T. Araujo, A. Jorio, M.S. Dresselhaus, K. Sato, R. Saito: Diameter dependence of the dielectric constant for the excitonic transition energy of single-wall carbon nanotubes, Phys. Rev. Lett. 103, 146802 (2009)

    Article  CAS  Google Scholar 

  228. T. Ando: Environment effects on excitons in semiconducting carbon nanotubes, J. Phys. Soc. Jpn. 79, 024706 (2010)

    Article  CAS  Google Scholar 

  229. A.R.T. Nugraha, R. Saito, K. Sato, P.T. Araujo, A. Jorio, M.S. Dresselhaus: Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes, Appl. Phys. Lett. 97, 091905 (2010)

    Article  CAS  Google Scholar 

  230. J. Maultzsch, H. Telg, S. Reich, C. Thomsen: Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment, Phys. Rev. B 72, 205438 (2005)

    Article  CAS  Google Scholar 

  231. E. Chang, D. Prezzi, A. Ruini, E. Molinari: Dark excitons in carbon nanotubes, Phys. Rev. B (2012), in press

    Google Scholar 

  232. G. Dukovic, F. Wang, D. Song, M.Y. Sfeir, T.F. Heinz, L.E. Brus: Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett. 5, 2314–2318 (2005)

    Article  CAS  Google Scholar 

  233. F. Wang, D.J. Cho, B. Kessler, J. Deslippe, P.J. Schuck, S.G. Louie, A. Zettl, T.F. Heinz, Y.R. Shen: Observation of excitons in one-dimensional metallic single-walled carbon nanotubes, Phys. Rev. Lett. 99, 227401 (2007)

    Article  CAS  Google Scholar 

  234. E.H. Hároz, J.G. Duque, B.Y. Lu, P. Nikolaev, S. Arepalli, R.H. Hauge, S.K. Doorn, J. Kono: Unique origin of colors of armchair carbon nanotubes, J. Am. Chem. Soc. 134, 4461–4464 (2011)

    Article  CAS  Google Scholar 

  235. A.B. Kaiser: Electronic transport properties of conducting polymers and carbon nanotubes, Rep. Prog. Phys. 64(1), 1 (2000)

    Article  Google Scholar 

  236. J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley: Metallic resistivity in crystalline ropes of single-wall carbon nanotubes, Phys. Rev. B 55, R4921–R4924 (1997)

    Article  CAS  Google Scholar 

  237. G.T. Kim, E.S. Choi, D.C. Kim, D.S. Suh, Y.W. Park, K. Liu, G. Duesberg, S. Roth: Magnetoresistance of an entangled single-wall carbon-nanotube network, Phys. Rev. B 58, 16064–16069 (1998)

    Article  CAS  Google Scholar 

  238. Y. Yosida, I. Oguro: Variable range hopping conduction in bulk samples composed of single-walled carbon nanotubes, J. Appl. Phys. 86(2), 999–1003 (1999)

    Article  CAS  Google Scholar 

  239. M.S. Fuhrer, M.L. Cohen, A. Zettl, V. Crespi: Localization in single-walled carbon nanotubes, Solid State Commun. 109(2), 105–109 (1998)

    Article  Google Scholar 

  240. P. Pipinys, A. Kiveris: Phonon-assisted tunnelling in electrical conductivity of individual carbon nanotubes and networks ones, Physica B 403(19/20), 3730–3733 (2008)

    Article  CAS  Google Scholar 

  241. A.B. Kaiser, K.J. Challis, G.C. McIntosh, G.T. Kim, H.Y. Yu, J.G. Park, S.H. Jhang, Y.W. Park: Frequency and field dependent conductivity of carbon nanotube networks, Curr. Appl. Phys. 2(2), 163–166 (2002)

    Article  Google Scholar 

  242. H. Xu, S. Zhang, S.M. Anlage, L. Hu, G. Grüner: Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density, Phys. Rev. B 77, 075418 (2008)

    Article  CAS  Google Scholar 

  243. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley: Single-electron transport in ropes of carbon nanotubes, Science 275, 1922–1925 (1997)

    Article  CAS  Google Scholar 

  244. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665 (2001)

    Article  CAS  Google Scholar 

  245. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654 (2003)

    Article  CAS  Google Scholar 

  246. D.H. Cobden, M. Bockrath, P.L. McEuen, A.G. Rinzler, R.E. Smalley: Spin splitting and even-odd effects in carbon nanotubes, Phys. Rev. Lett. 81, 681–684 (1998)

    Article  CAS  Google Scholar 

  247. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker: Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474–477 (1997)

    Article  CAS  Google Scholar 

  248. S.J. Tans, A.R.M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)

    Article  CAS  Google Scholar 

  249. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73(17), 2447–2449 (1998)

    Article  CAS  Google Scholar 

  250. S.J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M.A. Alam, S.V. Rotkin, J.A. Rogers: High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nat. Nanotechnol. 2, 230–236 (2007)

    Article  CAS  Google Scholar 

  251. J.U. Lee, P.P. Gipp, C.M. Heller: Carbon nanotube p-n junction diodes, Appl. Phys. Lett. 85, 145 (2004)

    Article  CAS  Google Scholar 

  252. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai: Negative differential conductance and hot phonons in suspended nanotube molecular wires, Phys. Rev. Lett. 95, 155505 (2005)

    Article  CAS  Google Scholar 

  253. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen: Luttinger liquid behavior in carbon nanotubes, Nature 397, 598 (1999)

    Article  CAS  Google Scholar 

  254. H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Carbon nanotube single-electron transistors at room temperature, Science 293, 76–79 (2001)

    Article  CAS  Google Scholar 

  255. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris: Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett. 89, 106801 (2002)

    Article  CAS  Google Scholar 

  256. S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge 1995)

    Book  Google Scholar 

  257. H. Mathieu: Physique des Semiconducteurs et des Composants électroniques (Dunod, Paris 2001)

    Google Scholar 

  258. M. Krüger, M.R. Buitelaar, T. Nussbaumer, C. Schönenberger, L. Forró: Electrochemical carbon nanotube field-effect transistor, Appl. Phys. Lett. 78(9), 1291–1293 (2001)

    Article  CAS  Google Scholar 

  259. W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai: Hysteresis caused by water molecules in carbon nanotube field-effect transistors, Nano Lett. 3(2), 193–198 (2003)

    Article  CAS  Google Scholar 

  260. J. Guo, S. Goasguen, M. Lundstrom, S. Datta: Metal–insulator–semiconductor electrostatics of carbon nanotubes, Appl. Phys. Lett. 81(8), 1486–1488 (2002)

    Article  CAS  Google Scholar 

  261. J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677–732 (2007)

    Article  CAS  Google Scholar 

  262. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, P. Avouris: Ambipolar electrical transport in semiconducting single-wall carbon nanotubes, Phys. Rev. Lett. 87, 256805 (2001)

    Article  CAS  Google Scholar 

  263. J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dai, R.B. Laughlin, L. Liu, C.S. Jayanthi, S.Y. Wu: Quantum interference and ballistic transmission in nanotube electron waveguides, Phys. Rev. Lett. 87, 106801 (2001)

    Article  CAS  Google Scholar 

  264. F. Léonard, J. Tersoff: Role of Fermi-level pinning in nanotube Schottky diodes, Phys. Rev. Lett. 84(20), 4693–4696 (2000)

    Article  Google Scholar 

  265. A. Javey, P. Qi, Q. Wang, H. Dai: Ten- to 50-nm-long quasi-ballistic carbon nanotubes devices obtained without complex lithography, Proc. Natl. Acad. Sci. USA 101, 13408–13410 (2004)

    Article  CAS  Google Scholar 

  266. R. Egger, A.O. Gogolin: Effective low-energy theory for correlated carbon nanotubes, Phys. Rev. Lett. 79, 5082 (1997)

    Article  CAS  Google Scholar 

  267. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273 (1999)

    Article  CAS  Google Scholar 

  268. J. Cao, Q. Wang, M. Rolandi, H. Dai: Aharonov–Bohm interference and beating in single-walled carbon-nanotube interferrometers, Phys. Rev. Lett. 93, 216803 (2004)

    Article  CAS  Google Scholar 

  269. E.D. Minot, Y. Yaish, V. Sazonova, P.L. McEuen: Determination of electron orbital magnetic moments in carbon nanotubes, Nature 428, 536–539 (2004)

    Article  CAS  Google Scholar 

  270. P. Avouris, Z. Chen, V. Perebeinos: Carbon-based electronics, Nat. Nanotechnol. 2, 605–615 (2007)

    Article  CAS  Google Scholar 

  271. L.X. Benedict, S.G. Louie, M.L. Cohen: Heat capacity of carbon nanotubes, Solid State Commun. 100(3), 177–180 (1996)

    Article  CAS  Google Scholar 

  272. J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, J.E. Fischer: Quantized phonon spectrum of single-wall carbon nanotubes, Science 289(5485), 1730–1733 (2000)

    Article  CAS  Google Scholar 

  273. J. Heremans, C.P. Beetz: Thermal conductivity and thermopower of vapor-grown graphite fibers, Phys. Rev. B 32, 1981–1986 (1985)

    Article  CAS  Google Scholar 

  274. S. Berber, Y.-K. Kwon, D. Tománek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613–4616 (2000)

    Article  CAS  Google Scholar 

  275. J. Hone, M. Whitney, C. Piskoti, A. Zettl: Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59, R2514–R2516 (1999)

    Article  CAS  Google Scholar 

  276. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai: Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett. 6(1), 96–100 (2006)

    Article  CAS  Google Scholar 

  277. C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar: Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5(9), 1842–1846 (2005)

    Article  CAS  Google Scholar 

  278. N. Mingo, D.A. Broido: Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett. 95, 096105 (2005)

    Article  CAS  Google Scholar 

  279. P. Kim, L. Shi, A. Majumdar, P.L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (2001)

    Article  CAS  Google Scholar 

  280. A.N. Volkov, L.V. Zhigilei: Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials, Phys. Rev. Lett. 104, 215902 (2010)

    Article  CAS  Google Scholar 

  281. R.S. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, P. Keblinski: Turning carbon nanotubes from exceptional heat conductors into insulators, Phys. Rev. Lett. 102, 105901 (2009)

    Article  CAS  Google Scholar 

  282. C.F. Cornwell, L.T. Wille: Elastic properties of single-walled carbon nanotubes in compression, Solid State Commun. 101, 555–558 (1997)

    Article  CAS  Google Scholar 

  283. J.P. Lu: Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  CAS  Google Scholar 

  284. G. Overney, W. Zhong, D. Tomanek: Structural rigidity and low-frequency vibrational-modes of long carbon tubules, Z. Phys. D 27, 93–96 (1993)

    Article  CAS  Google Scholar 

  285. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high youngʼs modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)

    Article  CAS  Google Scholar 

  286. B.I. Yakobson, C.J. Brabec, J. Bernholc: Nanomechanics of carbon tubes: Instabilities beyond linear range, Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  CAS  Google Scholar 

  287. E. Hernandez, C. Goze, A. Rubio: Elastic properties of C and B x C y N z composite nanotubes, Phys. Rev. Lett. 80, 4502–4505 (1998)

    Article  CAS  Google Scholar 

  288. B.I. Yakobson, C.J. Brabec, J. Bernholc: Structural mechanics of carbon nanotubes: From continuum elasticity to atomistic fracture, J. Comput.-Aided Mater. Des. 3, 173–182 (1996)

    Article  CAS  Google Scholar 

  289. J. Tersoff: Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61, 2879–2882 (1988)

    Article  CAS  Google Scholar 

  290. D.W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458–9471 (1990)

    Article  CAS  Google Scholar 

  291. J. Tersoff, R.S. Ruoff: Structural-properties of a carbon nanotube crystal, Phys. Rev. Lett. 73, 676–679 (1994)

    Article  CAS  Google Scholar 

  292. B.I. Yakobson: Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes, Appl. Phys. Lett. 72, 918–920 (1998)

    Article  CAS  Google Scholar 

  293. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff: Simulation of the fracture of nanotubes, Phys. Rev. B 65, 235430–1–235430–8 (2002)

    Article  CAS  Google Scholar 

  294. S. Ogata, Y. Shibutani: Ideal tensile strength and band gap of single-walled carbon nanotubes, Phys. Rev. B 68, 165409–1–165409–4 (2003)

    Article  CAS  Google Scholar 

  295. J. Bernholc, C. Brabec, M. Buongiorno Nardelli, A. Maiti, C.M. Roland, B.I. Yakobson: Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67, 39–46 (1998)

    Article  CAS  Google Scholar 

  296. T. Dumitrica, M. Hua, B.I. Yakobson: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes, PNAS 103, 6105–6109 (2006)

    Article  CAS  Google Scholar 

  297. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski: Mechanical properties of carbon nanotubes with vacancies and related defects, Phys. Rev. B 70, 245416–1–245416–8 (2004)

    Article  CAS  Google Scholar 

  298. A.J. Stone, D.J. Wales: Theoretical-studies of icosahedral C60 and some related species, Chem. Phys. Lett. 128, 501–503 (1986)

    Article  CAS  Google Scholar 

  299. T. Dumitrica, T. Belytschko, B.I. Yakobson: Bond-breaking bifurcation states in carbon nanotube fracture, J. Chem. Phys. 118, 9485–9488 (2003)

    Article  CAS  Google Scholar 

  300. M. Buongiorno Nardelli, B.I. Yakobson, J. Bernholc: Brittle and ductile behavior in carbon nanotubes, Phys. Rev. Lett. 81, 4656–4659 (1998)

    Article  Google Scholar 

  301. M. Menon, E. Richter, K.R. Subbaswamy: Structural and vibrational properties of fullerenes and nanotubes in a nonorthogonal tight-binding scheme, J. Chem. Phys. 104, 5875–5882 (1996)

    Article  CAS  Google Scholar 

  302. D. Srivastava, M. Menon, K. Cho: Nanoplasticity of single-wall carbon nanotubes under uniaxial compression, Phys. Rev. Lett. 83, 2973–2976 (1999)

    Article  CAS  Google Scholar 

  303. J.-P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró: Elastic and shear moduli of single-walled carbon nanotube, Phys. Rev. Lett. 82(5), 944–947 (1999)

    Article  CAS  Google Scholar 

  304. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)

    Article  CAS  Google Scholar 

  305. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  CAS  Google Scholar 

  306. S.A. Chesnokov, V.A. Nalimova, A.G. Rinzler, R.E. Smalley, J.E. Fischer: Mechanical energy storage in carbon nanotube springs, Phys. Rev. Lett. 82, 343–346 (1999)

    Article  CAS  Google Scholar 

  307. J. Tang, L.C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, S. Iijima: Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. Lett. 85, 1887–1889 (2000)

    Article  CAS  Google Scholar 

  308. A. Krishnan, E. Dujardin, T.W. Ebbessen, P.N. Yianilos, M.M.J. Treacy: Youngʼs modulus of single-walled nanotubes, Phys. Rev. B 58, 14013–14019 (1998)

    Article  CAS  Google Scholar 

  309. M.-S. Wang, D. Golberg, Y. Bando: Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects, Adv. Mater. 22, 4071–4075 (2010)

    Article  CAS  Google Scholar 

  310. J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, Z.F. Ren: Superplastic carbon nanotubes, Nature 439, 281 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastien Nanot , Nicholas A. Thompson , Ji-Hee Kim , Xuan Wang , William D. Rice , Erik H. Hároz , Yogeeswaran Ganesan , Cary L. Pint or Junichiro Kono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Nanot, S. et al. (2013). Single-Walled Carbon Nanotubes. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_4

Download citation

Publish with us

Policies and ethics