Skip to main content

Casimir Force in Micro and Nano Electro Mechanical Systems

  • Chapter
  • First Online:
Casimir Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 834))

Abstract

The last 10 years have seen the emergence of micro and nano mechanical force sensors capable of measuring the Casimir interaction with great accuracy and precision. These measurements have proved fundamental to further develop the understanding of vacuum fluctuations in the presence of boundary conditions. These micromechanical sensors have also allowed to quantify the influence of materials properties, sample geometry and unwanted interactions over the measurement of the Casimir force. In this review we describe the benefits of using micro-mechanical sensors to detect the Casimir interaction, we summarize the most recent experimental results and we suggest potential optomechanical experiments that would allow measuring this force in regimes that are currently unreachable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 60, 793 (1948)

    Google Scholar 

  2. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73 (1956)

    MathSciNet  Google Scholar 

  3. Milonni, P.W.: The Quantum Vacuum: An introduction to Quantum Electrodynamics. Academic, San Diego, CA (1993)

    Google Scholar 

  4. Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir effect. Oxford University Press Inc., New York (2009)

    Book  MATH  Google Scholar 

  5. Milton, K.A.: The Casimir Effect: Physical Manifestations of Zero-point Energy. World Scientific, Singapore (2001)

    Google Scholar 

  6. Mostepanenko, V.M., Trunov, N.N.: The Casimir Effect and its Applications. Oxford University Press, Oxford (1997)

    Google Scholar 

  7. Parsegian, V.A.: Van der Waals Forces: a Handbook for Biologists, Chemists, Engineers and Physicist. Cambridge University Press, New York (2006)

    Google Scholar 

  8. Spruch, L.: Long range (Casimir) interactions. Science 272, 145 (1996)

    Google Scholar 

  9. Daniel, K.: With apologies to Casimir. Physics Today, October 1990, p 9

    Google Scholar 

  10. Steve, L.: Casimir forces: still surprising after 60 years, Physics Today, February 2007

    Google Scholar 

  11. Jaffe, R.L., Scardicchio, A.: Casimir effect and geometric optics. Phys. Rev. Lett. 92, 070402 (2004)

    Google Scholar 

  12. Scardicchio, A., Jaffe, R.L.: Casimir effect: An optical approach. Nucl. Phys. B. 704, 552 (2005)

    Google Scholar 

  13. Special issue, Focus on Casimir forces, New J. Phys. 8, October (2006)

    Google Scholar 

  14. Klimchiskaya, G.L., Mohideen, U., Mostepanenko, V.M.: The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827 (2009)

    Google Scholar 

  15. Capasso, F., Munday, J.N., Iannuzzi, D., Chan, H.B.: Casimir forces and quantum electrodynamical torques: physics and nanomechanics, IEEE J. Selected. Topics Quantum Electron. 13, 400 (2007)

    Google Scholar 

  16. Elizalde, E.: A remembrance of Hendrik Casimir in the 60th anniversary of his discovery, with some basic considerations on the Casimir effect, J. Phys. Conf. Series 161, 012019 (2009)

    Google Scholar 

  17. Spaarnay, M.J.: Measurements of attractive forces between flat plates. Physica 24, 751, (1958)

    Google Scholar 

  18. van Blokland, P.H.G.M., Overbeek, J.T.G.: van der Waals forces between objects covered with a chromium layer. J. Chem. Soc. Faraday Trans. 74, 2637 (1978)

    Google Scholar 

  19. Lamoreaux, S.K.: Demonstration of the Casimir Force in the 0.6 to 6 μm Range. Phys. Rev. Lett. 78, 5 (1997)

    Google Scholar 

  20. Mohideen, U., Roy, A.: Precision measurement of the Casimir Force from 0.1 to 0.9 μm. Phys. Rev. Lett. 81, 4549 (1998)

    Google Scholar 

  21. Ederth, T.: Template-stripped gold surfaces with 0.4 nm rms roughness suitable for force measurements. Application to the Casimir force in the 20–100 nm range. Phys. Rev. A 62, 62104 (2000)

    Google Scholar 

  22. Chan, H., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J., Capasso, F.: Quantum mechanical actuation of microelectromechanical systems by the Casimir force, Science 291, 1942 (2001)

    Google Scholar 

  23. Decca, R., López, D., Fischbach, E., Klimchitskaya, G., Krause, D., Mostepanenko, V.: Precise comparison of theory and new experiment for the Casimir Force leads to stronger constraints on thermal quantum effects and long-range interaction. Ann. Phys. 318, 37 (2005)

    Article  ADS  MATH  Google Scholar 

  24. Stephen S.: Microsystems Design. Springer, New York (2000)

    Google Scholar 

  25. Ekinci, K., Roukes, M.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)

    Article  ADS  Google Scholar 

  26. Bustamante, C., et al.: Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705 (2004)

    Google Scholar 

  27. Connell, A.D.O., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)

    Article  ADS  Google Scholar 

  28. Schwab, K., Roukes, M.: Putting mechanics into quantum mechanics. Physics Today. 36. July (2005)

    Google Scholar 

  29. Stipe, B.C., et al.: Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001)

    Article  ADS  Google Scholar 

  30. López, D. et al.: Two dimensional MEMS piston array for Deep UV optical Pattern generation; Proc. IEEE/LEOS International Conference on Optical MEMS and their applications, 148 (2006); V. Aksyuk et al., MEMS spatial light modulator for optical maskless lithography; Solid State Sensors, Actuators and Microsystems workshop, Hilton Hear 2006

    Google Scholar 

  31. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New Developments in the Casimir Effect. Phys. Rep. 353, 1 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Roukes, M.L.: Technical digest of the 2000 solid-state sensor and actuator workshop Hilton Head Island, South Carolina (2000)

    Google Scholar 

  33. Decca, R.S., López, D., Fischbach, E., Krause, D.E.: Measurement of the Casimir Force Between Dissimilar Metals. Phys. Rev. Lett. 91, 050402 (2003)

    Article  ADS  Google Scholar 

  34. López, D., Decca, R.S., Fischbach, E., Krause, D.E.: MEMS Based Force Sensors: Design and Applications. Bell Labs Tech. J. 10, 61 (2005)

    Article  Google Scholar 

  35. Decca, R., López, D., Fischbach, E., Klimchitskaya, G., Krause, D., Mostepanenko, V.: Precise comparison of theory and new experiment for the casimir force leads to stronger constraints on thermal quantum effects and long-range interaction. Ann. Phys. 318, 37 (2005)

    Article  ADS  MATH  Google Scholar 

  36. The expression for the force is obtained through the derivative of the capacitance between a sphere and a plane. This capacitance is obtained in Boyer, L., Houzé, F., Tonck, A., Loubet, J-L., Georges, J-M.: The influence of surface roughness on the capacitance between a sphere and a plane. J. Phys. D Appl. Phys. 27, 1504 (1994)

    Google Scholar 

  37. Chen, F., Mohideen, U., Klimchitskaya, G.L., Mostepanenko, V.M.: Experimental test for the conductivity properties from the Casimir force between metal and semiconductor. Phys. Rev. A 74, 022103 (2006)

    Article  ADS  Google Scholar 

  38. Chiu, H.-C., Chang, C.-C., Castillo-Garza, R., Chen, F., Mohideen, U.: Experimental procedures for precision measurements of the Casimir force with an atomic force microscope. J. Phys. A: Math. Theor. 41, 164022 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  39. Kim, W. J., Brown-Hayes, M., Dalvit, D.A.R., Brownell, J.H., Onofrio, R.: Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry. Phys. Rev. A 78, 020101 (2008); (R); Reply to Comment on `Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry’. Phys. Rev. A 79, 026102 (2009); Decca R.S., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., López, D., Mohideen, U., Mostepanenko, V.M.: Comment on “Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry”. Phys. Rev. A 79, 026101 (2009)

    Google Scholar 

  40. Yang, C., Ramachandra, R., Wax, A., Dasari, M., Feld, S.: 2p Ambiguity-Free Optical Distance Measurement with Subnanometer Precision with a Novel Phase-Crossing Low-Coherence Interferometer. Opt. Lett. 27, 77 (2002)

    Article  ADS  Google Scholar 

  41. Decca, R.S., López, D.: Measurement of the Casimir force using a microelectromechanical torsional oscillator: electrostatic calibration. Int. J. Mod. Phys. A 24, 1748 (2009)

    Article  ADS  Google Scholar 

  42. Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Novel constraints on light elementary particles and extra-dimensional physics from the casimir effect. Eur. Phys. J. C. 51, 963 (2007)

    Article  ADS  Google Scholar 

  43. Palik, E.D.: editor, Handbook of Optical Constants of Solids. Academic Press, New York (1995)

    Google Scholar 

  44. Lambrecht, A., Reynaud, S.: Casimir Force Between Metallic Mirrors. Eur. Phys. J. D 8, 309 (2000)

    Article  ADS  Google Scholar 

  45. Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics. Pergamon Press, Oxford, Pt.II (1980)

    Google Scholar 

  46. Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Tests of new physics from precise measurements of the casimir pressure between two gold-coated plates. Phys. Rev. D. 75, 077101 (2007)

    Article  ADS  Google Scholar 

  47. Decca, R.S., López, D., Osquiguil, E.: New Results for the Casimir interaction: sample characterization and low temperature measurements. Proceedings of the quantum field theory under the influence of external conditions, Oklahoma to be published (2009)

    Google Scholar 

  48. de Man, S., et al.: No anomalous scaling in electrostatic calibrations for Casimir force measurements. Phys. Rev. A. 79, 024102 (2009)

    Google Scholar 

  49. Speake, C., Trenkel, C.: Forces between Conducting Surfaces due to Spatial Variations of Surface Potential Phys. Rev. Lett. 90, 160403 (2003)

    Google Scholar 

  50. Kim, W.J., Sushkov, O., Dalvit, D.A.R., Lamoreaux, S.K.: Measurement of the Short-Range Attractive Force between Ge Plates Using a Torsion Balance. Phys. Rev. Lett. 103, 060401 (2009)

    Article  ADS  Google Scholar 

  51. Hoogenboom, B.W., et al.: A Fabry–Perot interferometer for micrometer-sized cantilevers. Appl. Phys. Lett. 86, 074101 (2005)

    Google Scholar 

  52. Arcizet, O., et al.: High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor. Phys. Rev. Lett. 97, 133601 (2006)

    Article  ADS  Google Scholar 

  53. Miao, H., Srinivasan, K., Aksyuk, V.: Integrated MEMS tunable high quality factor optical cavity for optomechanical transduction. In: Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, paper CPDA10 (2010)

    Google Scholar 

  54. Srinivasan, K., Miao, H., Rakher, M.T., Davanco, M., Aksyuk, V.: Optomechanical Transduction of an Integrated Silicon Cantilever Probe Using a Microdisk Resonator. Nano Lett., 11, 791–797 (2011)

    Google Scholar 

  55. Miao, H., Srinivasan, K., Rakher, M.T., Davanco, M., Aksyuk, V.: CAVITY OPTOMECHANICAL SENSORS, Digest Tech. Papers, Transducers‘2011 Conference, Beijing, China, June 5–10 (2011)

    Google Scholar 

  56. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: Back-action at the mesoscale. Science 29, 321, 1172–1176 (2008)

    Google Scholar 

Download references

Acknowledgments

R. S. D. acknowledges support from the National Science Foundation (NSF) through grants Nos. CCF-0508239 and PHY-0701236, Los Alamos National Laboratories (LANL) support through contract No. 49423-001-07. The authors are grateful to the Defense Advanced Research Projects Agency (DARPA) grant No. 09-Y557.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Decca, R., Aksyuk, V., López, D. (2011). Casimir Force in Micro and Nano Electro Mechanical Systems. In: Dalvit, D., Milonni, P., Roberts, D., da Rosa, F. (eds) Casimir Physics. Lecture Notes in Physics, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20288-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20288-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20287-2

  • Online ISBN: 978-3-642-20288-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics