Casimir Force in Micro and Nano Electro Mechanical Systems

  • Ricardo Decca
  • Vladimir Aksyuk
  • Daniel López
Part of the Lecture Notes in Physics book series (LNP, volume 834)


The last 10 years have seen the emergence of micro and nano mechanical force sensors capable of measuring the Casimir interaction with great accuracy and precision. These measurements have proved fundamental to further develop the understanding of vacuum fluctuations in the presence of boundary conditions. These micromechanical sensors have also allowed to quantify the influence of materials properties, sample geometry and unwanted interactions over the measurement of the Casimir force. In this review we describe the benefits of using micro-mechanical sensors to detect the Casimir interaction, we summarize the most recent experimental results and we suggest potential optomechanical experiments that would allow measuring this force in regimes that are currently unreachable.


Casimir Force Optical Interferometer Optical Readout Natural Resonance Frequency Casimir Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



R. S. D. acknowledges support from the National Science Foundation (NSF) through grants Nos. CCF-0508239 and PHY-0701236, Los Alamos National Laboratories (LANL) support through contract No. 49423-001-07. The authors are grateful to the Defense Advanced Research Projects Agency (DARPA) grant No. 09-Y557.


  1. 1.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 60, 793 (1948)Google Scholar
  2. 2.
    Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73 (1956)MathSciNetGoogle Scholar
  3. 3.
    Milonni, P.W.: The Quantum Vacuum: An introduction to Quantum Electrodynamics. Academic, San Diego, CA (1993)Google Scholar
  4. 4.
    Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir effect. Oxford University Press Inc., New York (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Milton, K.A.: The Casimir Effect: Physical Manifestations of Zero-point Energy. World Scientific, Singapore (2001)Google Scholar
  6. 6.
    Mostepanenko, V.M., Trunov, N.N.: The Casimir Effect and its Applications. Oxford University Press, Oxford (1997)Google Scholar
  7. 7.
    Parsegian, V.A.: Van der Waals Forces: a Handbook for Biologists, Chemists, Engineers and Physicist. Cambridge University Press, New York (2006)Google Scholar
  8. 8.
    Spruch, L.: Long range (Casimir) interactions. Science 272, 145 (1996)Google Scholar
  9. 9.
    Daniel, K.: With apologies to Casimir. Physics Today, October 1990, p 9Google Scholar
  10. 10.
    Steve, L.: Casimir forces: still surprising after 60 years, Physics Today, February 2007Google Scholar
  11. 11.
    Jaffe, R.L., Scardicchio, A.: Casimir effect and geometric optics. Phys. Rev. Lett. 92, 070402 (2004)Google Scholar
  12. 12.
    Scardicchio, A., Jaffe, R.L.: Casimir effect: An optical approach. Nucl. Phys. B. 704, 552 (2005)Google Scholar
  13. 13.
    Special issue, Focus on Casimir forces, New J. Phys. 8, October (2006)Google Scholar
  14. 14.
    Klimchiskaya, G.L., Mohideen, U., Mostepanenko, V.M.: The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827 (2009)Google Scholar
  15. 15.
    Capasso, F., Munday, J.N., Iannuzzi, D., Chan, H.B.: Casimir forces and quantum electrodynamical torques: physics and nanomechanics, IEEE J. Selected. Topics Quantum Electron. 13, 400 (2007)Google Scholar
  16. 16.
    Elizalde, E.: A remembrance of Hendrik Casimir in the 60th anniversary of his discovery, with some basic considerations on the Casimir effect, J. Phys. Conf. Series 161, 012019 (2009)Google Scholar
  17. 17.
    Spaarnay, M.J.: Measurements of attractive forces between flat plates. Physica 24, 751, (1958)Google Scholar
  18. 18.
    van Blokland, P.H.G.M., Overbeek, J.T.G.: van der Waals forces between objects covered with a chromium layer. J. Chem. Soc. Faraday Trans. 74, 2637 (1978)Google Scholar
  19. 19.
    Lamoreaux, S.K.: Demonstration of the Casimir Force in the 0.6 to 6 μm Range. Phys. Rev. Lett. 78, 5 (1997)Google Scholar
  20. 20.
    Mohideen, U., Roy, A.: Precision measurement of the Casimir Force from 0.1 to 0.9 μm. Phys. Rev. Lett. 81, 4549 (1998)Google Scholar
  21. 21.
    Ederth, T.: Template-stripped gold surfaces with 0.4 nm rms roughness suitable for force measurements. Application to the Casimir force in the 20–100 nm range. Phys. Rev. A 62, 62104 (2000)Google Scholar
  22. 22.
    Chan, H., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J., Capasso, F.: Quantum mechanical actuation of microelectromechanical systems by the Casimir force, Science 291, 1942 (2001)Google Scholar
  23. 23.
    Decca, R., López, D., Fischbach, E., Klimchitskaya, G., Krause, D., Mostepanenko, V.: Precise comparison of theory and new experiment for the Casimir Force leads to stronger constraints on thermal quantum effects and long-range interaction. Ann. Phys. 318, 37 (2005)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Stephen S.: Microsystems Design. Springer, New York (2000)Google Scholar
  25. 25.
    Ekinci, K., Roukes, M.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Bustamante, C., et al.: Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705 (2004)Google Scholar
  27. 27.
    Connell, A.D.O., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Schwab, K., Roukes, M.: Putting mechanics into quantum mechanics. Physics Today. 36. July (2005)Google Scholar
  29. 29.
    Stipe, B.C., et al.: Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    López, D. et al.: Two dimensional MEMS piston array for Deep UV optical Pattern generation; Proc. IEEE/LEOS International Conference on Optical MEMS and their applications, 148 (2006); V. Aksyuk et al., MEMS spatial light modulator for optical maskless lithography; Solid State Sensors, Actuators and Microsystems workshop, Hilton Hear 2006Google Scholar
  31. 31.
    Bordag, M., Mohideen, U., Mostepanenko, V.M.: New Developments in the Casimir Effect. Phys. Rep. 353, 1 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Roukes, M.L.: Technical digest of the 2000 solid-state sensor and actuator workshop Hilton Head Island, South Carolina (2000)Google Scholar
  33. 33.
    Decca, R.S., López, D., Fischbach, E., Krause, D.E.: Measurement of the Casimir Force Between Dissimilar Metals. Phys. Rev. Lett. 91, 050402 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    López, D., Decca, R.S., Fischbach, E., Krause, D.E.: MEMS Based Force Sensors: Design and Applications. Bell Labs Tech. J. 10, 61 (2005)CrossRefGoogle Scholar
  35. 35.
    Decca, R., López, D., Fischbach, E., Klimchitskaya, G., Krause, D., Mostepanenko, V.: Precise comparison of theory and new experiment for the casimir force leads to stronger constraints on thermal quantum effects and long-range interaction. Ann. Phys. 318, 37 (2005)ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    The expression for the force is obtained through the derivative of the capacitance between a sphere and a plane. This capacitance is obtained in Boyer, L., Houzé, F., Tonck, A., Loubet, J-L., Georges, J-M.: The influence of surface roughness on the capacitance between a sphere and a plane. J. Phys. D Appl. Phys. 27, 1504 (1994)Google Scholar
  37. 37.
    Chen, F., Mohideen, U., Klimchitskaya, G.L., Mostepanenko, V.M.: Experimental test for the conductivity properties from the Casimir force between metal and semiconductor. Phys. Rev. A 74, 022103 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Chiu, H.-C., Chang, C.-C., Castillo-Garza, R., Chen, F., Mohideen, U.: Experimental procedures for precision measurements of the Casimir force with an atomic force microscope. J. Phys. A: Math. Theor. 41, 164022 (2008)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Kim, W. J., Brown-Hayes, M., Dalvit, D.A.R., Brownell, J.H., Onofrio, R.: Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry. Phys. Rev. A 78, 020101 (2008); (R); Reply to Comment on `Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry’. Phys. Rev. A 79, 026102 (2009); Decca R.S., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., López, D., Mohideen, U., Mostepanenko, V.M.: Comment on “Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry”. Phys. Rev. A 79, 026101 (2009) Google Scholar
  40. 40.
    Yang, C., Ramachandra, R., Wax, A., Dasari, M., Feld, S.: 2p Ambiguity-Free Optical Distance Measurement with Subnanometer Precision with a Novel Phase-Crossing Low-Coherence Interferometer. Opt. Lett. 27, 77 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    Decca, R.S., López, D.: Measurement of the Casimir force using a microelectromechanical torsional oscillator: electrostatic calibration. Int. J. Mod. Phys. A 24, 1748 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Novel constraints on light elementary particles and extra-dimensional physics from the casimir effect. Eur. Phys. J. C. 51, 963 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Palik, E.D.: editor, Handbook of Optical Constants of Solids. Academic Press, New York (1995)Google Scholar
  44. 44.
    Lambrecht, A., Reynaud, S.: Casimir Force Between Metallic Mirrors. Eur. Phys. J. D 8, 309 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics. Pergamon Press, Oxford, Pt.II (1980)Google Scholar
  46. 46.
    Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Tests of new physics from precise measurements of the casimir pressure between two gold-coated plates. Phys. Rev. D. 75, 077101 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    Decca, R.S., López, D., Osquiguil, E.: New Results for the Casimir interaction: sample characterization and low temperature measurements. Proceedings of the quantum field theory under the influence of external conditions, Oklahoma to be published (2009)Google Scholar
  48. 48.
    de Man, S., et al.: No anomalous scaling in electrostatic calibrations for Casimir force measurements. Phys. Rev. A. 79, 024102 (2009)Google Scholar
  49. 49.
    Speake, C., Trenkel, C.: Forces between Conducting Surfaces due to Spatial Variations of Surface Potential Phys. Rev. Lett. 90, 160403 (2003)Google Scholar
  50. 50.
    Kim, W.J., Sushkov, O., Dalvit, D.A.R., Lamoreaux, S.K.: Measurement of the Short-Range Attractive Force between Ge Plates Using a Torsion Balance. Phys. Rev. Lett. 103, 060401 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Hoogenboom, B.W., et al.: A Fabry–Perot interferometer for micrometer-sized cantilevers. Appl. Phys. Lett. 86, 074101 (2005)Google Scholar
  52. 52.
    Arcizet, O., et al.: High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor. Phys. Rev. Lett. 97, 133601 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Miao, H., Srinivasan, K., Aksyuk, V.: Integrated MEMS tunable high quality factor optical cavity for optomechanical transduction. In: Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, paper CPDA10 (2010)Google Scholar
  54. 54.
    Srinivasan, K., Miao, H., Rakher, M.T., Davanco, M., Aksyuk, V.: Optomechanical Transduction of an Integrated Silicon Cantilever Probe Using a Microdisk Resonator. Nano Lett., 11, 791–797 (2011)Google Scholar
  55. 55.
    Miao, H., Srinivasan, K., Rakher, M.T., Davanco, M., Aksyuk, V.: CAVITY OPTOMECHANICAL SENSORS, Digest Tech. Papers, Transducers‘2011 Conference, Beijing, China, June 5–10 (2011)Google Scholar
  56. 56.
    Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: Back-action at the mesoscale. Science 29, 321, 1172–1176 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Ricardo Decca
    • 1
  • Vladimir Aksyuk
    • 2
  • Daniel López
    • 3
  1. 1.Indiana University–Purdue University IndianapolisIndianapolisUSA
  2. 2.Center for Nanoscale Science and TechnologNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Argonne National LaboratoryCenter for Nanoscale MaterialsLemontUSA

Personalised recommendations