Advertisement

Characterization of Optical Properties and Surface Roughness Profiles: The Casimir Force Between Real Materials

  • P. J. van ZwolEmail author
  • V. B. Svetovoy
  • G. Palasantzas
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 834)

Abstract

The Lifshitz theory provides a method to calculate the Casimir force between two flat plates if the frequency dependent dielectric function of the plates is known. In reality any plate is rough and its optical properties are known only to some degree. For high precision experiments the plates must be carefully characterized otherwise the experimental result cannot be compared with the theory or with other experiments. In this chapter we explain why optical properties of interacting materials are important for the Casimir force, how they can be measured, and how one can calculate the force using these properties. The surface roughness can be characterized, for example, with the atomic force microscope images. We introduce the main characteristics of a rough surface that can be extracted from these images, and explain how one can use them to calculate the roughness correction to the force. At small separations this correction becomes large as our experiments show. Finally we discuss the distance upon contact separating two rough surfaces, and explain the importance of this parameter for determination of the absolute separation between bodies.

Keywords

Dielectric Function Gold Film Casimir Force Dielectric Data Roughness Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research was carried out under Project No. MC3.05242 in the framework of the Strategic Research Programme of the Materials Innovation Institute M2i (the former Netherlands Institute for Metals Research NIMR) The authors benefited from exchange of ideas by the ESF Research Network CASIMIR.

References

  1. 1.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948)zbMATHGoogle Scholar
  2. 2.
    Lifshitz, E.M. (1955) Zh. Eksp. Teor. Fiz. 29, 894 [Soviet Phys. JETP 2, 73 (1956)]Google Scholar
  3. 3.
    Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: General theory of van der Waals’ forces. Usp. Fiz. Nauk 73, 381–421 (1961) [Soviet Phys. Usp. 4, 153–176 (1961)]Google Scholar
  4. 4.
    Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics, Part 2. Pergamon, Oxford (1980)Google Scholar
  5. 5.
    Lamoreaux, S.K.: The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68, 201–236 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Capasso, F., Munday, J.N., Iannuzzi, D., Chan, H.B.: Casimir Forces and Quantum Electrodynamical Torques: Physics and Nanomechanics. IEEE J. Sel. Top. Quantum Electron. 13, 400–414 (2007)CrossRefGoogle Scholar
  7. 7.
    Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, New York (1995)Google Scholar
  8. 8.
    Weaver,J.H., Krafka, C., Lynch, D.W., Koch, E.E.:(1981) Optical properties of metals, Part II, Physics Data No. 18-2. Fachinformationszentrum Energie, Physik, Mathematik, KarsruheGoogle Scholar
  9. 9.
    Lambrecht, A., Reynaud, S.: Casimir force between metallic mirrors. Eur. Phys. J. D 8, 309–318 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Lamoreaux, S.K.: Calculation of the Casimir force between imperfectly conducting plates. Phys. Rev. A 59, R3149–R3153 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Lamoreaux, S.K.: Comment on “Precision Measurement of the Casimir Force from 0.1 to 0.9 \(\upmu\hbox{m}\)”. Phys. Rev. Lett. 83, 3340 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Svetovoy, V.B., Lokhanin, M.V.: Do the precise measurements of the Casimir force agree with the expectations?. Mod. Phys. Lett. A 15, 1013–1021 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Svetovoy, V.B., Lokhanin, M.V.: Precise calculation of the Casimir force between gold surfaces. Mod. Phys. Lett. A 15, 1437–1444 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Pirozhenko, I., Lambrecht, A., Svetovoy, V.B.: Sample dependence of the Casimir force. New J. Phys. 8, 238 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Svetovoy, V.B., van Zwol, P.J., Palasantzas, G., DeHosson, J.Th.M.: Optical properties of gold films and the Casimir force. Phys. Rev. B 77, 035439 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    van Zwol, P.J., Palasantzas, G., De Hosson, J.Th.M.: Influence of dielectric properties on van der Waals/Casimir forces in solid-liquid systems. Phys. Rev. 79, 195428 (2009)CrossRefGoogle Scholar
  17. 17.
    Genet, C., Lambrecht, A., Maia Neto, P., Reynaud, S.: The Casimir force between rough metallic plates. Europhys. Lett. 62, 484–490 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Maia Neto, P., Lambrecht, A., Reynaud, S.: Roughness correction to the Casimir force: Beyond the Proximity Force Approximation. Europhys. Lett. 69, 924–930 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Maia Neto, P., Lambrecht, A., Reynaud, S.: Casimir effect with rough metallic mirrors. Phys. Rev. A 72, 012115 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Derjaguin, B.V., Abrikosova, I.I., Lifshitz, E.M.: Direct measurement of molecular attraction between solids separated by a narrow gap. Q. Rev. Chem. Soc. 10, 295–329 (1956)CrossRefGoogle Scholar
  21. 21.
    DelRio, F.W., de Boer, M.P., Knapp, J.A., Reedy, E.D. Jr, Clews, P.J., Dunn, M.L.: The role of van derWaals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Maboudian, R., Howe, R.T.: Critical review: Adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B 15, 1 (1997)CrossRefGoogle Scholar
  23. 23.
    Houston, M.R., Howe, R.T., Maboudiana, R.: Effect of hydrogen termination on the work of adhesion between rough polycrystalline silicon surfaces. J. Appl. Phys. 81, 3474–3483 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    van Zwol, P.J., Palasantzas, G., De Hosson, J.Th.M.: Influence of random roughness on the Casimir force at small separations. Phys. Rev. B 77, 075412 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Lamoreaux, S.K.: Demonstration of the Casimir force in the \(0.6\text{--}6\,\upmu\hbox{m}\) range. Phys. Rev. Lett. 78, 5–8 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Harris, B.W. et al.: Precision measurement of the Casimir force using gold surfaces. Phys. Rev. A. 62, 052109 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    Decca, R.S. et al.: Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 75, 077101 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Aspnes, D.E., Kinsbron, E., Bacon, D.D.: Optical properties of Au: Sample effects. Phys. Rev B 21, 3290–3299 (1980)ADSCrossRefGoogle Scholar
  29. 29.
    Chen, F., Mohideen, U., Klimchitskaya, G.L., Mostepanenko, V.M.: Investigation of the Casimir force between metal and semiconductor test bodies. Phys. Rev. A 72, 020101 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Dold, B., Mecke, R.: Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infratot. Optik 22, 435–446 (1965)Google Scholar
  31. 31.
    Motulevich, G.P., Shubin, A. A.: Influence of Fermi surface shape in gold on the optical constants and hall effect. Zh. Eksp.Teor. Fiz. 47, 840 (1964) [Soviet Phys. JETP 20, 560–564 (1965)]Google Scholar
  32. 32.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1963)Google Scholar
  33. 33.
    Zhou, F., Spruch, L.: van der Waals and retardation (Casimir) interactions of an electron or an atom with multilayered walls. Phys. Rev. A 52, 297–310 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    Iannuzzi, D., Lisanti, M., Capasso, F.: Effect of hydrogen-switchable mirrors on the Casimir force. Proc. Natl. Acad. Sci. U.S.A. 101, 4019–4023 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Lisanti, M., Iannuzzi, D., Capasso, F.: Observation of the skin-depth effect on the Casimir force between metallic surfaces. Proc. Natl. Acad. Sci. U.S.A. 102, 11989–11992 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with Conductive Oxides. Phys. Rev. Lett. 103, 040402 (2009)CrossRefGoogle Scholar
  37. 37.
    Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. North Holland, Amsterdam (1987)Google Scholar
  38. 38.
    Tompkins, H.G., McGahan, W.A.: Spectroscopic Ellipsometry and Reflectometry. Wiley, New York (1999)Google Scholar
  39. 39.
    Hofmann, T. et al.: Terahertz Ellipsometry Using Electron-Beam Based Sources. Mater. Res. Soc. Symp. Proc. 1108, A08–04 (2009)Google Scholar
  40. 40.
    Feng, R., Brion, C.E.: Absolute photoabsorption cross-sections (oscillator strengths) for ethanol (5–200 eV). Chem. Phys. 282, 419–427 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    Tompkins, H.G., Irene, E.A.: Handbook of ellipsometry William Andrew (2005)Google Scholar
  42. 42.
    van Zwol, P.J., Palasantzas, G., van de Schootbrugge, M., De Hosson, J.Th.M.: Measurement of dispersive forces between evaporated metal surfaces in the range below 100 nm. Appl. Phys. Lett. 92, 054101 (2008)ADSCrossRefGoogle Scholar
  43. 43.
  44. 44.
    Thèye, M.-L.: Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films. Phys. Rev. B 2, 3060–3078 (1970)ADSCrossRefGoogle Scholar
  45. 45.
    Munday, J.N., Capasso, F., Parsegian, A.: Measured long-range repulsive CasimirLifshitz forces. Nature 457, 170–173 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Dagastine, R.R., Prieve, D.C., White, L.R.: The Dielectric Function for Water and Its Application to van der Waals Forces. J. Colloid Interface Sci. 231, 351–358 (2000)CrossRefGoogle Scholar
  47. 47.
    Munday, J.N., Capasso, F., Parsegian, A., Bezrukov, S.M.: Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening. Phys. Rev. A 78, 032109 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    Kitamura, R. et al.: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Optics 46, 8118 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    Segelstein, D.J.: The complex refractive index of water. PhD thesis, University of Missouri, Kansas City, USA (1981)Google Scholar
  50. 50.
    Nguyen, A.V.: Improved approximation of water dielectric permittivity for calculation of hamaker constants. J. Colloid Interface Sci. 229, 648–651 (2000)CrossRefGoogle Scholar
  51. 51.
    Parsegian, V.A., Weiss, G.H.: Spectroscopic parameters for computation of van der Waals forces. J. Colloid Interface Sci. 81, 285–289 (1981)CrossRefGoogle Scholar
  52. 52.
    Roth, C.M., Lenhoff, A.M.: Improved parametric representation of water dielectric data for Lifshitz theory calculations. J. Colloid Interface Sci. 179, 637–639 (1996)CrossRefGoogle Scholar
  53. 53.
    van Oss, C.J., Chaudhury, M.K., Good, R.J.: Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88, 927–941 (1988)CrossRefGoogle Scholar
  54. 54.
    Milling, A., Mulvaney, P., Larson, I.: Direct measurement of repulsive van der Waals interactions using an atomic force microscope. J. Colloid Interface Sci. 180, 460465 (1996)CrossRefGoogle Scholar
  55. 55.
    Ogawa, M., Cook, G.R.: Absorption Coefficients of Methyl, Ethyl, N-Propyl and N-Butyl Alcohols. J. Chem. Phys 28, 747–748 (1957)ADSCrossRefGoogle Scholar
  56. 56.
    Salahub, D.R., Sandorfy, C.: The far-ultraviolet spectra of some simple alcohols and fluoroalcohols. Chem. Phys. Lett. 8, 71–74 (1971)ADSCrossRefGoogle Scholar
  57. 57.
    Koizumi, H. et al.: VUV-optical oscillator strength distributions of \(\hbox{C}_2\hbox{H}_6\hbox{O}\) and \(\hbox{C}_3\hbox{H}_8\hbox{O}\) isomers. J. Chem. Phys. 85, 4276–4279 (1986)ADSCrossRefGoogle Scholar
  58. 58.
    Sethna, P.P., Williams, D.: Optical constants of alcohols in the infrared. J. Phys. Chem. 83, 405–409 (1979)CrossRefGoogle Scholar
  59. 59.
    Bertie, J.E., Zhang, S.L., Keefe, C.D.: Measurement and use of absolute infrared absorption intensities of neat liquids. Vib. Spectro. 8, 215–229 (1995)CrossRefGoogle Scholar
  60. 60.
    van Zwol, P.J., Palasantzas, G., DeHosson, J.Th.M.: Weak dispersion forces between glass and gold macroscopic surfaces in alcohols. Phys. Rev. E. 79, 041605 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    Meakin, P.: The growth of rough surfaces and interfaces. Phys. Rep. 235, 189–289 (1993)ADSCrossRefGoogle Scholar
  62. 62.
    Palasantzas, G., Krim, J.: Experimental Observation of Self-Affine Scaling and Kinetic Roughening at Sub-Micron Lengthscales. Int. J. Mod. Phys. B, 9, 599–632 (1995)ADSCrossRefGoogle Scholar
  63. 63.
    Zhao, Y., Wang, G.-C., Lu, T.-M.: Characterization of Amorphous and Crystalline Rough Surfaces-principles and Applications. Academic Press, New York (2001)Google Scholar
  64. 64.
    Palasantzas, G.: Power spectrum and surface width of self-affine fractal surfaces via the k-correlation model. Phys. Rev. B 48, 14472–14478 (1993)ADSCrossRefGoogle Scholar
  65. 65.
    Palasantzas, G.: Phys. Rev. B 49, 5785 (1994)ADSCrossRefGoogle Scholar
  66. 66.
    Klimchitskaya, G.L., Pavlov, Yu.V.: The correction to the Casimir forces for configurations used in experiments: the spherical lens above the plane and two crossed cylinders. Int. J. Mod. Phys. A 11, 3723–3742 (1996)ADSCrossRefGoogle Scholar
  67. 67.
    Rodriguez, A., Ibanescu, M., Iannuzzi, D., Capasso, F., Joannopoulos, J.D., Johnson, S.G.: Computation and Visualization of Casimir Forces in Arbitrary Geometries: Nonmonotonic Lateral-Wall Forces and the Failure of Proximity-Force Approximations. Phys. Rev. Lett. 99, 080401 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    van Zwol, P.J., Palasantzas, G., De Hosson, J.Th.M.: Influence of roughness on capillary forces between hydrophilic sur-faces. Phys. Rev. E 78, 031606 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    DelRio, F.W., Dunn, M.L., Phinney, L.M., Bourdon, C.J.: Rough surface adhesion in the presence of capillary condensation. Appl. Phys. Lett. 90, 163104 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    van Zwol, P.J., Palasantzas, G., De Hosson, J.Th.M.: Influence of random roughness on the adhesion between metal surfaces due to capillary condensation. Appl. Phys. Lett. 91, 101905 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    Israelachvili, J.: Intermolecular and Surface Forces. Academic, New York (1992)Google Scholar
  72. 72.
    Palasantzas, G., Svetovoy, V.B., van Zwol, P.J.: Influence of water adsorbed on gold on van der Waals/Casimir forces. Phys. Rev. B 79, 235434 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    van Zwol, P.J., Svetovoy, V.B., Palasantzas, G.: Distance upon contact: Determination from roughness profile. Phys. Rev. B 80, 235401 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A 295, 300–319 (1966)ADSCrossRefGoogle Scholar
  75. 75.
    Coles, S.: An Introduction to Statistical Modelling of Extreme Values. Springer, Berlin (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • P. J. van Zwol
    • 1
    Email author
  • V. B. Svetovoy
    • 2
  • G. Palasantzas
    • 1
  1. 1.Materials Innovation Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenThe Netherlands
  2. 2.MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations