Skip to main content

Molecular Mechanisms of Adaptations to High Salt Concentration in the Extremely Halotolerant Black Yeast Hortaea werneckii

  • Chapter
  • First Online:
Halophiles and Hypersaline Environments

Abstract

The discovery of the black yeast Hortaea werneckii as the dominant fungal species in hypersaline waters enabled the introduction of a new model organism to study the mechanisms of salt tolerance in eukaryotes. H. werneckii is also a promising source of transgenes to improve osmotolerance of industrially important yeasts, as well as crops. This chapter describes the physiological and molecular adaptations to hypersaline conditions observed in the extremely halotolerant H. werneckii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert A, Yenush L, Gil-Mascarell MR, Rodriguez PL, Patel S, Martinez-Ripoll M, Blundell TL, Serrano R (2000) X-ray structure of yeast Hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. J Mol Biol 295:927–938

    Article  PubMed  CAS  Google Scholar 

  • Andrews S, Pitt JJ (1987) Further studies on the water relations of xerophilic fungi, including some halophiles. J Gen Microbiol 133:233–238

    CAS  Google Scholar 

  • Azúa-Bustos A, González-Silva C, Salas L, Palma RE, Vicuňa R (2010) A novel subaerial Dunaliella species growing on cave spiderwebs in the Atacama Desert. Extremophiles 14:443–452

    Article  PubMed  Google Scholar 

  • Brock TD (1979) Ecology of saline lakes. In: Shilo M, Hirsch P (eds) Strategies of microbial life in extreme environments: report of the Dahlem Workshop on Strategy of Life in Extreme Environments, Berlin, 1978, November 20–24. Verlag Chemie, Weinheim, pp 29–47

    Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  PubMed  CAS  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 1:73–79

    Article  Google Scholar 

  • Cantrell SA, Casillas L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  PubMed  CAS  Google Scholar 

  • Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47

    Article  PubMed  CAS  Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2:e457

    Article  PubMed  Google Scholar 

  • de Hoog GS (1993) Evolution of black yeasts: possible adaptation to the human host. Antonie Leeuwenhoek 63:105–109

    Article  PubMed  Google Scholar 

  • de Hoog GS, Guého E (1998) Agents of white piedra, black piedra and tinea nigra. In: Kreier J, Wakelin D, Cox F (eds) Topley & Wilson’s microbiology and microbial infections. Hodder Arnold, London, pp 100–112

    Google Scholar 

  • de Hoog GS, Zalar P, Urzi C, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:31–37

    Google Scholar 

  • Dichtl B, Stevens A, Tollervey D (1997) Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes. EMBO J 16:7184–7195

    Article  PubMed  CAS  Google Scholar 

  • Fettich M, Lenassi M, Veranič P, Gunde-Cimerman N, Plemenitaš A (2011) Identification and characterization of putative osmosensors, HwSho1A and HwSho1B, from the extremely halotolerant black yeast Hortaea werneckii. Fungal Genet Biol 48(5):475–484

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges J (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock dwelling microcolonial fungi. Can J Bot 81:131–138

    Article  CAS  Google Scholar 

  • Gorbushina AA, Kotlova ER, Sherstneva OA (2008) Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Stud Mycol 61:91–97

    Article  PubMed  CAS  Google Scholar 

  • Gorjan A, Plemenitaš A (2006) Identification and characterization of ENA ATPasesHwENA1 and HwENA2 from the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 265:41–50

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Turk M, Plemenitaš A, Gunde-Cimerman N (2009) The expressions of D9-, D12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Res 9:247–256

    Article  PubMed  Google Scholar 

  • Gostinčar C, Grube M, de Hoog GS, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  Google Scholar 

  • Gostinčar C, Grube M, Gunde-Cimerman N (2011) Indoor potential of black fungi: enrichment or evolution? Fungal Biol (in press)

    Google Scholar 

  • Göttlich E, de Hoog GS, Yoshida S, Takeo K, Nishimura K, Miyaji M (1995) Cell surface hydrophobicity and lipolysis as essential factors in human tinea nigra. Mycoses 38:489–494

    Article  PubMed  Google Scholar 

  • Gueidan C, Villasenor CR, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    Article  PubMed  CAS  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in Artic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Google Scholar 

  • Hocking AD (1993) Responses of xerophilic fungi to changes in water activity. In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 233–243

    Google Scholar 

  • Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71:6600–6605

    Article  PubMed  CAS  Google Scholar 

  • Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153:4261–4273

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3:RESEARCH0008

    Article  PubMed  Google Scholar 

  • Krantz M, Becit E, Hohmann S (2006) Comparative genomics of the HOG-signalling system in fungi. Curr Genet 49:137–151

    Article  PubMed  CAS  Google Scholar 

  • Lenassi M, Plemenitaš A (2007) Novel group VII histidine kinase HwHhk7B from the halophilic fungi Hortaea werneckii has a putative role in osmosensing. Curr Genet 51:393–405

    Article  PubMed  CAS  Google Scholar 

  • Lenassi M, Vaupotič T, Gunde-Cimerman N, Plemenitaš A (2007) The MAP kinase HwHog1 from the halophilic black yeast Hortaea werneckii: coping with stresses in solar salterns. Saline Syst 3:3

    Article  PubMed  Google Scholar 

  • Lenassi M, Zajc J, Gostinčar C, Gorjan A, Gunde-Cimerman N, Plemenitaš A (2011) Adaptation of the glycerol-3-phosphate dehydrogenase Gpd1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga. Fungal Biol (in press)

    Google Scholar 

  • Northolt MD, Frisvad JC, Samson RA (1995) Occurrence of food-borne fungi and factors for growth. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction to food-borne fungi. CBS, Delft, pp 243–250

    Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    Article  PubMed  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  PubMed  CAS  Google Scholar 

  • Petrovič U, Gunde-Cimerman N, Plemenitaš A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45:665–672

    Article  PubMed  Google Scholar 

  • Pitt JI, Hocking AD (1997) Fungi and food spoilage. Blackie Academic & Professional, London

    Google Scholar 

  • Plemenitaš A, Gunde-Cimerman N (2005) Cellular reponses in the halophilic black yeast Hortaea weneckii to high environmental salinity. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea Bacteria and Eukarya. Springer, Dordrecht, pp 455–470

    Google Scholar 

  • Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  PubMed  Google Scholar 

  • Ramos-Cormenzana A (1991) Halophilic organisms and the environment. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum, New York, pp 15–31

    Google Scholar 

  • Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15

    Article  PubMed  Google Scholar 

  • Russell NJ, Evans RI, Steeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28:255–261

    Article  PubMed  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC (2004) Introduction to food- and airborne fungi. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • Schneider B, Xu YW, Janin J, Veron M, Deville-Bonne D (1998) 3-O-Phosphorylated nucleotides are tight binding inhibitors of nucleoside diphosphate kinase activity. J Biol Chem 273:28773–28778

    Article  PubMed  CAS  Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15.

    Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Slepecky RA, Starmer WT (2009) Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia 101:823–832

    Article  PubMed  Google Scholar 

  • Sterflinger K (1998) Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Leeuwenhoek 74:271–281

    Article  PubMed  CAS  Google Scholar 

  • Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22

    Google Scholar 

  • Turk M, Plemenitaš A (2002) The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p. FEMS Microbiol Lett 216:193–199

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Méjanelle L, Šentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:53–61

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Abramović Z, Plemenitaš A, Gunde-Cimerman N (2007) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7:550–557

    Article  PubMed  CAS  Google Scholar 

  • van Baarlen P, van Belkum A, Summerbell RC, Crous PW, Thomma BPHJ (2007) Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev 31:239–277

    Article  PubMed  Google Scholar 

  • Vaupotič T, Plemenitaš A (2007a) Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8:280

    Article  PubMed  Google Scholar 

  • Vaupotič T, Plemenitaš A (2007b) Osmoadaptation-dependent activity of microsomal HMG-CoA reductase in the extremely halotolerant black yeast Hortaea werneckii is regulated by ubiquitination. FEBS Lett 581:3391–3395

    Article  PubMed  Google Scholar 

  • Vaupotič T, Gunde-Cimerman N, Plemenitaš A (2007) Novel 3′-phosphoadenosine-5′-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genet Biol 44:1109–1122

    Article  PubMed  Google Scholar 

  • Vaupotič T, Veranič P, Jenoe P, Plemenitaš A (2008a) Mitochondrial mediation of environmental osmolytes discrimination during osmoadaptation in the extremely halotolerant black yeast Hortaea werneckii. Fungal Genet Biol 45:994–1007

    Article  PubMed  Google Scholar 

  • Vaupotič T, Veranič P, Petrovič U, Gunde-Cimerman N, Plemenitaš A (2008b) HMG-CoA reductase is regulated by environmental salinity and its activity is essential for halotolerance in halophilic fungi. Stud Mycol 61:61–66

    Article  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294

    Article  CAS  Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005a) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Leeuwenhoek 87:311–328

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005b) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326

    Article  Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008a) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Frisvad JC, Gunde-Cimerman N, Varga J, Samson RA (2008b) Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100:779–795

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The scientific work was partly financed via operation “Centre of excellence for integrated approaches in chemistry and biology of proteins” number OP13.1.1.2.02.0005, and financed by European regional development fund, by Slovenian Ministry of higher education, science, and technology (15% share of financing), and Slovenian Research Agency (85% share of financing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Gunde-Cimerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plemenitaš, A., Gunde-Cimerman, N. (2011). Molecular Mechanisms of Adaptations to High Salt Concentration in the Extremely Halotolerant Black Yeast Hortaea werneckii . In: Ventosa, A., Oren, A., Ma, Y. (eds) Halophiles and Hypersaline Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20198-1_7

Download citation

Publish with us

Policies and ethics