Skip to main content

Low Power Memory Cell Design Technique

  • Chapter
  • First Online:
Low Power and Reliable SRAM Memory Cell and Array Design

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 31))

  • 1846 Accesses

Abstract

This chapter describes the low power memory cell design technique. Section 4.1 introduces fundamentals of leakage of SRAM array. In Sect. 4.2, source line voltage control techniques are explained as new designs to reduce standby power dissipation. Using the techniques for a 16-Mbit SRAM chip fabricated in 0. 13-μm CMOS technology, the cell-standby current is 16.7 fA at 25 ∘ C and 101.7 fA at 90 ∘ C. By applying the techniques to 1-Mbit 130-nm embedded SRAM, the leakage current is reduced by about 90% from 230 to 25 μA. In Sect. 4.3, a new SRAM cell layout design developed for low-voltage operation is described. A lithographically symmetrical cell for lower-voltage operation was developed. The measured butterfly curves indicate that the memory cell has a large enough noise margin even at 0.3 V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.C. Chum, et al., A sub-0.9V logic-compatible embedded DRAM with boosted 3T gain cell, regulated bit-line write scheme and PVT-tracking read reference bias, in Symposium on VLSI Technology Digest, June 2009, pp. 134–135

    Google Scholar 

  2. S.-H. Lo, D.A. Buchanan, Y. Taur, W. Wang, Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18(5), 209–211 (1997)

    Article  Google Scholar 

  3. D.J. Frank, Device scaling, leakage currents, and joint technology and system optimization, in 2002 VLSI Circuits Symposium Short Course, June 2002

    Google Scholar 

  4. M. Rosar, B. Leroy, G. Schweeger, A new model for the description of gate voltage and temperature dependence of gate-induced drain leakage (GIDL) in the low electric field region. IEEE Trans. Electron Dev. 47(1), 154–159 (2000)

    Article  Google Scholar 

  5. J. Maserjian, Tunneling in thin MOS structures. J. Vac. Sci. Technol. 11(6), 996–1003 (1974)

    Article  Google Scholar 

  6. J. Sune, P. Olivo, B. Ricco, Quantum-mechanical modeling of accumulation layers in MOS structure. IEEE Trans. Electron Dev. 39(7), 1732–1739 (1992)

    Article  Google Scholar 

  7. G.A.M. Hurkx, D.B.M. Klaassen, M.P.G. Knuvers, A new recombination model for device simulation including tunneling. IEEE Trans. Electron Dev. 39(2), 331–338 (1992)

    Article  Google Scholar 

  8. K. Nii, H. Makino, Y. Tujihashi, C. Morishima, Y. Hayakawa, H. Nunogami, T. Arakawa, H. Hamano, A low-power SRAM using auto-backgate-controlled MT-CMOS, in Proceedings of the International Symposium on Low Power Electronics and Devices, August 1998, pp. 293–298

    Google Scholar 

  9. H. Yamauchi, T. Iwata, H. Akamatsu, A. Matsuzawa, A 0.5 V single power supply operated high-speed boosted and offset-grounded data storage (BOGS) SRAM cell architecture. IEEE Trans. VLSI Syst. 5(4), 377–387 (1997)

    Google Scholar 

  10. D.H. Kim, S.J. Kim, B.J. Hwang, S.H. Seo, J.H. Choi, H.S. Lee, W.S. Yang, M.S. Kim, K.H. Kwak, J.Y. Lee, J.Y. Joo, J.H. Kim, K. Koh, S.H. Park, J.I. Hong, Highly manufacturable 32Mb ULP-SRAM technology by using dual gate process for 1.5V Vcc operation, in Symposium on VLSI Technology Digest, June 2002, pp. 118–119

    Google Scholar 

  11. K. Osada, Y. Saitoh, E. Ibe, K. Ishibashi, 16.7-fA/cell tunnel-leakage-suppressed 16-Mbit SRAM for handling cosmic-ray-induced multi-errors. IEEE J. Solid-State Circuits 38(11), 1952–1957 (2003)

    Google Scholar 

  12. M. Yamaoka, Y. Shinozaki, N. Maeda, Y. Shimazaki, K. Kato, S. Shimada, K. Yanagisawa, K. Osada, A 300-MHz \(25 -\mu \mathrm{A/Mb}\)-leakage on-chip SRAM module featuring process-variation immunity and low-leakage-active mode for mobile-phone application processor. IEEE J. Solid-State Circuits 40(1), 186–194 (2005)

    Article  Google Scholar 

  13. T.D. Burd, et al., A dynamic voltage scaled microprocessor system. IEEE J. Solid-State Circuits 35, 1571–1580 (2000)

    Article  Google Scholar 

  14. T. Uetake, et al., A 1.0ns access 770MHz 36Kb SRAM macro, in Symposium on VLSI Circuits Digest, June 1999, pp. 109–110

    Google Scholar 

  15. K. Osada, J.L. Shin, M. Khan, Y. Liou, K. Wang, K. Shoji, K. Kuroda, S. Ikeda, K. Ishibashi, Universal-Vdd 0.65–2.0-V 32-kB cache using voltage-adapted timing-generation scheme and a lithographical-symmetric cell. IEEE J. Solid-State Circuits 36(11), 1738–1744 (2001)

    Google Scholar 

  16. K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, S. Imaoka, H. Makino, Y. Yamagami, S. Ishikura, T. Terano, T. Oashi, K. Hashimoto, A. Sebe, G. Okazaki, K. Satomi, H. Akamatsu, H. Shinohara, A 45-nm bulk CMOS embedded SRAM with improved immunity against process and temperature variations. IEEE J. Solid-State Circuits 42(1), 180–191 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Osada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osada, K., Yamaoka, M. (2011). Low Power Memory Cell Design Technique. In: Ishibashi, K., Osada, K. (eds) Low Power and Reliable SRAM Memory Cell and Array Design. Springer Series in Advanced Microelectronics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19568-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19568-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19567-9

  • Online ISBN: 978-3-642-19568-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics