Skip to main content

Dirichlet Series and Functional Analysis

  • Chapter
The Legacy of Niels Henrik Abel

Abstract

The study of Dirichlet series of the form \( \sum\nolimits_{n = 1}^\infty {a_n n^{ - s} } \) has a long history beginning in the nineteenth century, and the interest was due mainly to the central role that such series play in analytic number theory. The general theory of Dirichlet series was developed by Hadamard, Landau, Hardy, Riesz, Schnee, and Bohr, to name a few. However, the main results were obtained before the central ideas of Functional Analysis became part of the toolbox of every analyst, and it would seem a good idea to insert this modern way of thinking into the study of Dirichlet series. Some effort has already been spent in this direction; we mention the papers by Helson [20, 21] and Kahane [22, 23]. However, the field did not seem to catch on. It is hoped that this paper can act as a catalyst by pointing at a number of natural open problems, as well as some recent advances. Fairly recently, in [17], Hedenmalm, Lindqvist, and Seip considered a natural Hilbert space H 2 of Dirichlet series and began a systematic study thereof. The elements of H 2 are analytic functions on the half-plane

$$ \mathbb{C}_{\frac{1} {2}} = \left\{ {s \in \mathbb{C} : Re s > \frac{1} {2}} \right\} $$

of the form

$$ f(s) = \sum\limits_{n = 1}^{ + \infty } {a_n n^{ - s} } $$
(1.1)

(1.1) where the coefficients a1,a2,a3, ⋯ are complex numbers subject to the norm boundedness condition

$$ \left\| f \right\|_{\mathcal{H}^2 } = \left( {\sum\limits_{n = 1}^{ + \infty } {\left| {a_n } \right|^2 } } \right)^{\frac{1} {2}} < + \infty . $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Agler, J. E. McCarthy, Pick interpolation and Hilbert function spaces. (English) Graduate Studies in Mathematics. 44. Providence, RI: American Mathematical Society (AMS), 2002.

    Google Scholar 

  2. F. Bayart, De nouveaux espaces de séries de Dirichlet et leurs opérateurs de composition. (French) [New spaces of Dirichlet series and their composition operators] C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 207–212.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Bayart, Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136 (2002), no. 3, 203–236.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bayart, Compact composition operators on a Hilbert space of Dirichlet series, Illinois J. Math, to appear.

    Google Scholar 

  5. F. Bayart, Private communication.

    Google Scholar 

  6. A. Beurling, The collected works of Arne Beurling. Vol. 2. Harmonic analysis. Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. Contemporary Mathematicians. Birkhauser Boston, Inc., Boston, MA, 1989.

    Google Scholar 

  7. H. Bohr: Über die Gleichmässige Konvergenz Dirichletscher Reihen, J. Reine Angew. Math. 143 (1913), 203–211.

    MATH  Google Scholar 

  8. L. de Branges, The convergence of Eule r products. J. Funct. Anal. 107 (1992), 122–210.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. de Branges, A conjecture which implies the Riemann hypothesis. J. Funct. Anal. 121 (1994), 117–184.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Erdos, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 221–254.

    Google Scholar 

  12. C. Finet, H. Queffeléc, A. Volberg, Compactness of composition operators on a Hilbert space of Dirichlet series, preprint, 2002.

    Google Scholar 

  13. J. Gordon, H. Hedenmalm, The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J. 46 (1999), 313–329.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Halász, On random multiplicative functions, Hubert Delange colloquium (Orsay, 1982), Publ. Math. Orsay, 83-4, Univ. Paris XI, Orsay, 1983; pp. 74–96.

    Google Scholar 

  15. G. H. Hardy, M. Riesz, The general theory of Dirichlet’s series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 18 Stechert-Hafner, Inc., New York, 1964 (originally published in 1915).

    Google Scholar 

  16. H. Hedenmalm, Topics in the theory of Dirichlet series, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 475 (2000), 195–203.

    MATH  Google Scholar 

  17. H. Hedenmalm, P. Lindqvist, K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Hedenmalm, P. Lindqvist, K. Seip, Addendum to “A Hilbert space of Dirichlet series and systems of dilated functions in L2(0,1) ”, Duke Math. J. 99 (1999), 175–178.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Hedenmalm, E. Saksman, Carleson’s convergence theorem for Dirichlet series, Pacific J. Math. 208 (2003), 85–109.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Helson, Foundations of the theory of Dirichlet series, Acta Math. 118 (1967), 61–77.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Helson, Compact groups and Dirichlet series, Ark. Mat. 8 (1969), 139-143.

    Google Scholar 

  22. J.-P. Kahane, S. Mandelbrojt, Sur l’equation fonctionnelle de Riemann et la formule sommatoire de Poisson, Ann. Sci. Ecole Norm. Sup. (3) 75 (1958), 57–80.

    MathSciNet  MATH  Google Scholar 

  23. J.-P. Kahane, The last problem of Harald Bohr, J. Austral. Math. Soc. Ser. A 47 (1989), no. 1, 133–152.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. V. Konyagin, H. Queffélec, The translation 1/2 in the theory of Dirichlet series. Real Anal. Exchange 27 (2001/02), no. 1, 155–175.

    MathSciNet  Google Scholar 

  25. J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481–519.

    Article  Google Scholar 

  26. J. E. McCarthy, Hilbert spaces of Dirichlet Series and their multipliers, Trans. Amer. Math. Soc., to appear.

    Google Scholar 

  27. H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, 84; published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1994.

    Google Scholar 

  28. I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, Fifth edition, John Wiley & Sons, Inc., New York, 1991.

    Google Scholar 

  29. G. Polya, Bemerkung über die Integraldarstellung der Riemannschen ξ-Funktion, Acta Math. 48 (1926), 305–317.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3 (1995), 43–60.

    MathSciNet  MATH  Google Scholar 

  31. W. Schnee, Zum Konvergenzproblem der Dirichletschen Reihen, Math Ann. 66 (1909), 337–349.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), 375–404.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. N. Shiryaev, Probability, Second edition, Graduate Texts in Mathematics 95, Springer-Verlag, New York, 1996.

    Google Scholar 

  34. A. Wintner, Random factorizations and Riemann’s hypothesis, Duke Math. J. 11 (1944), 267–275.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hedenmalm, H. (2004). Dirichlet Series and Functional Analysis. In: Laudal, O.A., Piene, R. (eds) The Legacy of Niels Henrik Abel. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18908-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18908-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62350-9

  • Online ISBN: 978-3-642-18908-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics